
Memory Management is library based not language based

- example: storing varying amounts of data provided interactively

- arrays either waste space, or occasionally too small

- pre-defined arrays are not suitable in general

- many data-structuring techniques, add-on products

extern -- global scope

static -- module/file scope

local -- function scope

dynamic -- known only if provided with address (not exactly scope in the
traditional sense)

ANSI standard functions:

malloc - get a piece of storage from operating environment

free - give storage back

1) stdlib.h -- standard file containing memory-manipulation functions

2 define struct and pointer types

1

1) sizeof == compile-time; “get storage big enough to hold thing to which
start points), not sizeof(start), which is size of pointer

2) malloc returns null if not available

3) notation : dereference, then field select == (*start).next

NULL: sort of zero, actually “a pointer value toat does’t point at anything”

[chalkboard walkthough]

1

3 2

1) library not language

2) standard defines names and basic semmantics; implementations are free
to implement as suits [sys call or not, efficiency, garbage collect etc.]

3) almost always layered for real programs

4) there exists exception handling libraries for extraordinary situations

Code reusability becomes important for data-manipulation etc. Need well-
designed libraries

Example, build and display a singly-linked list

1) unresolved forward pointer declaration

1

builds the list backwards

displays the list. to free as you go:

static void display_list(void)

{

list_element *current, *next;

current = list_head;

while(current != NULL)

{

printf("%d\n", current->data);

next = current->link;

free(current);

current = next;

}

}

input 1 2 3 4 -1

