Section 12

Summary




The C programming language

general purpose language

widespread use in industry and education
developed at Bell Labs

ANSI standard X3.159.1989

reference: The C Programming Language,
Second Edition, Kernighan and Ritchie,
Prentice-Hall, 1988

implementation and system dependencies
require vendor documentation

IBM SAA CPI/C - Level 2 (SC09-1308)



Data types

integer
float
pointer
array
struct
union
enum
void

as seen
integers are king, most operators defined to work conveniently with ints



Storage classes and qualifiers

extern (known to entire program)
static (known to compilation unit where defined)

register, auto (local — known in block where
defined)

dynamic (known where explicitly made
available)

const, volatile (read only, modified in unknown
ways)

1) auto -- default class for local variables, never need the keyword so
omitted, register means allocate to a machine register if possible

2) Volatile: modified in a way the compiler cannot know ( e.g., interrupt
vector)

implications for optimizers flow control, storage alloc, etc.



void some_function( intp )
{
auto char *str; /* as usual */
register int i; /* in a machine register */

const double Pl = 3.14159;
volatile long int IOPSW;




Control structures

if
while
for
do

switch
break
continue

also goto



Program structure facilities

functions

separate compilation
preprocessor and macro language
block structure

scope facilities

functions are important



Standard C library

« commonly used facilities
— string and character manipulation (with international support)
— floating-point functions (math, conversions)

« system facilities
— input/output
— memory allocation
— date and time, resource usage
— exception handling

* numerous add-on libraries
— access to system-dependent facilities
— data structures (AVL trees, B-trees, ...)

reference TOC of C library help



Primary benefits of C

development: easier and more reliable than
assembler

efficiency: close to assembler
convenience: high-level-language benefits

portability: available on most systems

easier to program

small run-time environment

nice for ASM-class apps, system programs
vendor independence on most platforms

Downside: hard to learn, harder to get good at, easy to write bad, buggy
programs



