
C has lots of operators -- originally, an attempt to model instructions sets of
hardware (esp PDP-11)

Lots of them (powerful, terse, overwhelming at times)

Before discussing operators, need to have a quite look at arithmetic types
and declarations (specify ranges of values and storage):

Basically, most things are integers (ints), considered to be equivalent to
mahine word. Historically, a word was the smallest addressible unit of
storage (PDP-11, might even be true for x86, who knows?).

Character (char) is also considered to be an “arithmetic” type; its just a very
small integer (can only how values from 0 to 255 or -128 to +127). Generally
assume that a char is the smallest unit of data (corresponds to a byte of
storage).

declarations: what the type is and what the name of the variable is.

aside: rules for identifiers as usual, remember case sensitive.

integers: lots of different modifiers that can be applied

size: how much storage, system-dependent unspecified means system
default (for PC, 16 or 32 bits depending on OS), long and short a relative to
system default.

sign: should the number be consiferd signed or unsigned. may or may not
be of concern (affects things like relative comparisons, overflow conditions)

lots of ints

floats are all system-dependent: PC uses IEEE 2, 4, 8 bytes, etc

declarations: pick the apprropriate type to model the data being
represented.

can force constants to acquire specific types (controls amount of storage).

note single character constant (not a string)

dealing with constants:

constants are a fact of life, good programming practice to use symbolic
constants

eg compare against 100 as literal const. better engineering to use constant.

use #define: another one of the preprocessor directives:

two parts, item and replacement. compiler will replace item with
replacement wherever it occurs (very simple macro). substitution occurs at
compile-time (referred to as a lexical replacement)

replacement can be arbitrary; can take time to compile

type of constant can change depending on context (eg in this example would
be unsigned, since conpared to unsigned; if changes to signed variable,
constant would be considered signed).

different kind of constant, use a “storage class” in a variable declaration.

says that value of variable does not change (and provides its initial value)

type cannot change, but compiler could optimize storage (eg assember
literals instead of actual storage).

traditional priority of ops.

assignment is a binary operator, its “value” is the lhs.

the act of assigning is almost like a side-effect, so in a simple assignment
statement the value is discarded and we use the side effect.

so, statements like a=b=c work. (equiv to a = (b=c))

but note:

if (a = b)

is probably not what you want.

remember == for equality test

highlight ! for not

result of a relational op is an integer value that is 0 for false and not 0 for
true (typically 1 or -1)

this is why

if(a=b)

is so much trouble

logical vs bitwise

yield integers with same meanings as relational

