Section 2

Arithmetic Operators

C has lots of operators -- originally, an attempt to model instructions sets of
hardware (esp PDP-11)

Lots of them (powerful, terse, overwhelming at times)

Before discussing operators, need to have a quite look at arithmetic types
and declarations (specify ranges of values and storage):

Basically, most things are integers (ints), considered to be equivalent to
mahine word. Historically, a word was the smallest addressible unit of
storage (PDP-11, might even be true for x86, who knows?).

Character (char) is also considered to be an “arithmetic” type; its just a very
small integer (can only how values from 0 to 255 or -128 to +127). Generally
assume that a char is the smallest unit of data (corresponds to a byte of
storage).

* integers of varying sizes and "signedness"

« size: long or short or not specified
+ sign: signed or unsigned (default is signed)

+ examples of integer types:
char
signed char
unsigned char
int
signed int
unsigned int

declarations: what the type is and what the name of the variable is.
aside: rules for identifiers as usual, remember case sensitive.

integers: lots of different modifiers that can be applied

size: how much storage, system-dependent unspecified means system
default (for PC, 16 or 32 bits depending on OS), long and short a relative to
system default.

sign: should the number be consiferd signed or unsigned. may or may not
be of concern (affects things like relative comparisons, overflow conditions)

« examples of integer types: (continued)
short
short int
short signed int
short unsigned
short unsigned int

long

long int

long signed int
long unsigned
long unsigned int

lots of ints

+ reals (floating-point) of varying precision and
range:

float
double
long double

« example declarations:
int i;
double xval1;
char first_initial;
unsigned short NamelLength;
long int status_word;

floats are all system-dependent: PC uses IEEE 2, 4, 8 bytes, etc

declarations: pick the apprropriate type to model the data being
represented.

Constants

T the type of an unsuffixed integer constant varies with machine
architecture and the value of the constant

can force constants to acquire specific types (controls amount of storage).

note single character constant (not a string)

main()
{

unsigned int size;

if(size > 100)

#define WIDTH 100

main()

{

unsigned int size;

if(size > WIDTH)

dealing with constants:

constants are a fact of life, good programming practice to use symbolic
constants

eg compare against 100 as literal const. better engineering to use constant.
use #define: another one of the preprocessor directives:

two parts, item and replacement. compiler will replace item with
replacement wherever it occurs (very simple macro). substitution occurs at
compile-time (referred to as a lexical replacement)

replacement can be arbitrary; can take time to compile

type of constant can change depending on context (eg in this example would
be unsigned, since conpared to unsigned; if changes to signed variable,
constant would be considered signed).

main()

{
const unsigned int WIDTH = 100;

unsigned int size;

if(size > WIDTH)

different kind of constant, use a “storage class” in a variable declaration.
says that value of variable does not change (and provides its initial value)

type cannot change, but compiler could optimize storage (eg assember
literals instead of actual storage).

Basic Arithmetic

assignment

add, unary plus
subtract, unary minus
multiply

divide

mod

parentheses

traditional priority of ops.
assignment is a binary operator, its “value” is the Ihs.

the act of assigning is almost like a side-effect, so in a simple assignment
statement the value is discarded and we use the side effect.

so, statements like a=b=c work. (equiv to a = (b=c))
but note:

if (@=Db)
is probably not what you want.

For example:

Xx=y+3-6/3+2z),

x:y:O;

Relational

equal

not equal

less than

less than or equal
greater than

greater than or equal

remember == for equality test
highlight ! for not

For example:

if(x>y)
{

if(x<z)

{

x:(y::)!

TRUE ==1 /* any non-zero */
FALSE ==

result of a relational op is an integer value that is O for false and not 0 for
true (typically 1 or -1)
this is why
if(a=b)
is so much trouble

Logical Connectives

&& and
| or
I

not

Examples:
if((x>y)&& (x<z))
if((x <= 10) && (A\(x\) == 0))

x = ((y==0) || (z==5));

logical vs bitwise
yield integers with same meanings as relational

Bitwise

and

or

exclusive or
not

shift right
shift left

For example:

#define MASK 0x00000040 /* bit 25 */
unsigned int status;

status = status | MASK; /* set mask */

if(status & MASK) [* test mask */

status = status & ~MASK; /* clear mask */

status = status » MASK; /* toggle mask */

Auto Increment and
Decrement

++ increment
— — decrement

For example:

z=--a; [*Predecrement*/

X =++a; /[* Pre increment */

Z=a--; [*Postdecrement */

X =a++; [*Postincrement */

Special Assignment

plus assign
subtract
multiply
mod

divide

and

or

exclusive or
right shift
left shift

For example:

y+=5; [*equivalenty=y+5 */

y += z--; [* Side effect only done once */

status *= MASK;

Conditional Expression

<expr1> ? <expr2> : <expr3>

For example:

min=(a<b)?a:b;

ifta<b)

Comma Operator

<expri1>, <expr2>

For example:

c=(a,b)

Operators and Associativity in decreasing
precedence

left to right

right to left

right to left
left to right
left to right
left to right

left to right

parentheses

logical not

bitwise not (1’'s complement)
auto ince., decr. (pre, post)
unary plus, minus

get storage size
dereference, address of

force type (typecast)
multiply, divide, modulus
plus, minus

shift bits right, left

less than, ..or equal
greater than, ..or equal

erators an ssociativity in decreasin
O t dA tivit gl
precedence (continued)

left to right

left to right

left to right
left to right
left to right
left to right
right to left
right to left

left to right

equal, not equal
bit-wise “and”
bit-wise “exclusive or”
bit-wise “or”
connective “and”
connective “or”
conditiona; expr
assignment

comma

Basic Arithmetic Types

Type

char

signed char
unsigned char
short int
unsigned short
int

unsigned int
long int
unsigned long
float

double

Size

>= 8-bits
>= 8-bits
>= 8-bits
>= 16-bits
>= 16-bits
>= 16-bits
>= 16-bits
>= 32-bits
>= 32-bits
32-bits

64-bits

‘ Notes

'signed or unsigned

-127 .. 127

0..255

-32,767 .. 32,767

0 ..65,535

machine dependent

unsigned version
-2,147483,647 .. 2,147,483,647

real numbers

Conversion Rules

« Hierachy of conversions:

signed-char < unsigned-char < short <
unsigned-short < int < unsigned-int <
long-int < unsigned-long-int < float <
double < long-double

« Promote smaller types to int

1.

Conversion Rules

Op1
-any-
-any-
-any-
-any-
-any-
-any-

any

‘ Op2 ‘ Result

Mongdoubb wongdoubb

‘douue ‘doume ‘

{ﬂoat ‘ﬂoat
'unsigned long ‘unsgnedlong
'long int long int 1
lunsigned int | unsigned int

int int

only if long-int is really bigger than int

/* oper-1.c : Monthly Payment Schedule */

#include <stdio.h>

main()

{

float balance, principal, interest;
int month;

balance = 10000.00;

month = 1;

printf(" month balance");
printf(" interest principal\in\n");
interest = balance * 0.01;
principal = 750.00 - interest;

while(balance > principal)
{
printf("%6d%9.2f%9.2f%10.2f\n",
month, balance,
interest, principal);
balance = balance - principal;
interest = balance * 0.01;
principal = 750.00 - interest;
month++;

}
printf("%6d%9.2f%9.2f%10.2f\n\n",

month, balance,
interest, principal);

printf("number of months to repay is %d\n"
month);

month balance interest principal

1 10000.00 100.00 650.00
2 9350.00 93.50 656.50
3 8693.50 86.93 663.07
4 8030.44 80.30 669.70
5 7360.74 73.61 676.39
6 6684.35 66.84 683.16
7 6001.19 60.01 689.99
8 5311.20 53.11 696.89
9 4614.31 46.14 703.86
10 3910.46 39.10 710.90
11 3199.56 32.00 718.00
12 2481.56 24.82 725.18
13 1756.37 17.56 732.44
14 1023.94 10.24 739.76
15 284.18 2.84 747.16

number of months to repay is 15

[* oper-2.c : Monthly Payment Schedule */

#tinclude <stdio.h>

#define RATE 0.01
#define INITIAL 10000.00
#define PAYMENT 750.00

main()

{

float balance, principal, interest;
int month;

balance = INITIAL;

month = 1;

printf(" month balance");
printf(" interest principal\n\n");
interest = balance * RATE;

principal = PAYMENT - interest;
while(balance > principal)
{
printf("%6d%9.2f%9.2f%10.2f\n",
month, balance,
interest, principal);
balance = balance - principal;
interest = balance * RATE;
principal = PAYMENT - interest;
month++;
}
printf("%6d%9.2f%9.2f%10.2An\n",
month, balance,
interest, principal);
printf("number of months to repay is %d\n",
month);

