
Control structures, control execution sequence of statements in program.

semi-colons after statements, never after braces

if statement -- choose between two alternative actions called object
statements

object statements: then part and else part

objects are single statements, use braces to form compound statement

increase complexity, decisions within decisions represented by nested if
statements

if-else associations cannot “cross” braces -- if-else must associate within
same compound statement. (nesting level)

Eg: get rid of first else; 2nd else doesn’t associate with 2nd if because
wrong level

Illustration following

Braces are necessary to resolve ambiguitues.

classic problem in this style of language called “dangling else”

this illsustrates situation just mentioned -- which if does else go with?

use of braces makes it clear: don’t cross boundaries

1) correct structure (no braces) for nesting: else goes with closest if

2) misleading indentation: still no braces present, so association is same as
before

3) must have braces to associate else with outer if

1 2

3

Choose one action from a set of actions

- C has no explicit “elseif”, so use cascading if-else-if; presentation is very
stylized, but functionally equivalent.

True form:
if(blah)

{

asdfasdf

}

else

{

if(blah)

{

asdfasdf

}

else

{

if(blah)

{

asdfasdf

}

}

}

eliminate brace preceding if:

if(blah)

{

asdfasdf

}

else

if(blah)

{

asdfasdf

}

else

if(blah)

{

asdfasdf

}

rearrange indendation
and spacing

if(blah)

{

asdfasdf

}

else if(blah)

{

asdfasdf

}

else if(blah)

{

asdfasdf

}

- always uses braces to avoid problems

if-else-if is very common, explicit statement for handling situation

called “switch”, analogous to “case” statement in other languages

an example of a switch statement

mechanics: evaluate expression, find matching case label.

execute statements sequentially, if break found, goto end of switch

if none found goto default (aka otherwise)

more formally:

1) expression evaluates to one of the case labels

2) case labels must evaluate to constants complie-time. only one permitted
(but note fall-though technique)

3) switch object statement is a statement block (sequence), control transfers
to indicated label (like a goto); execution proceeds from that point forward.
braces not required within cases, since not object statements

4) if no match, go to default case. if no default, do nothing

5) break transfers control to end of switch object. if no break, “fall through”
to next case. Comes from “computed goto” and “label in statement
sequence” idea. Allows multiple labels per action

1 2

3

4

5

summary, as noted

difference between switch and if-else-if, mostly style and taste. switch can
sometimes express “choose one of” idea (dense cases)

some practical differences:

1) expression evaluated once

- some compilers may be able to generate branch table or other special
optimization.

- duplicate cases easy to identify

- but: missing break can be pesky

1

3) expression evaluate lots (every time up until match) -- could be expensive,
if optimizer cannot hoist common code.

- necessary if non-constant tests

- good for sparse cases

- not so good if same action in multiple places: requires “or” expressions
that can become messy

3

looping construct to repeat statement

expression evaluates to false (zero) or true (non-zero)

statement can be a compound statement

if expression initially false, never executes statement

variation of while: do-while

upside-down while, iteration test at end of loop

loop object always executes at least once

not much difference between the two, useful if computation of expression
depends on execution of statement

ordinary for statement as already seen -- nothing new

three parts: initialization, loop control, incrementor

three steps: initialize, test termination, do statement and increment

not dependent on integral steps, no associated variables (eg read a file)

might never execute statement or expr3

not much difference

for stmt guarantees that incrementor will be done after the stmt; syntax make
incrementor very explicit

while relies on user to implement incremenotr and put in proper place (nb
continue statement)

use break to get out of loops & switch

not if statement

one level at a time

continue: somewhat of a novelty?

“go around again” for all looping structures (closest enclosing, no way to be
explicit)

in for stmts, proceeds directly to for incrementor expression, then test

in while stmts, goes directly to top and tests: if incrementor not placed
carefully, problem

ok for use with for, generally dangerous for others

