
in C, programs are collections of functions:

some functions we write, some are provided

some functions return values, some do not. even if they do, we can
ignore/discard value

typical program: reads a value, performs a computation

currently all contained within a function called main.

note ugly format -- saves space

now, isolate the reading operation: put into own function

1) imagine that we have a function “ReadMark” that will prompt for and read
number, then return number. this is how we would invoke it

1

2) definition of function. note similar structure to that of main

- located in same source-file, two fns in same compilation unit (compiled
together)

3) return type is integer. note similarity of function declaration to integer
declaration.

4) incoming parameters. none in this case, so kwd “void”

5) variable definition. can be accessed only within this function.

6) return statement: executable, gives value to be returned

2

3

4

5
6

generic view:

- int is the default type of a function, main returns an int.

- our definition of main should specify void --- acceptable for historical
reasons

- vars are local: cannot refere to mark in readvmark, cannot refer to
markval in main

- no history between invocations, created and destroyed each invocation

- every program has a main, defined as starting point.

- to emphasise that return is executable

- dubious engineering? useful for error-handling

general for for parameterless functions

- function type can be any type: int char, unsigned long, double etc.

- compilers will not enforce type-match, may issue warnings in some cases
(eg constants)

- can use void keyword for return-type to indicate no type returned, often
called a “procedure”

example of a procedure (function that returns nothing)

procedures useful for side-effects (since they don’t return a value).

in this case, procedure to grade a mark: mark will be passed as a parameter

1) invocation of procedure: like function invocation with discarded result:
same as printf etc.

2) pass parameter

3) corrected version of definition of main: void parameter list

1

2

3

procedure definition: return-type is void

parameter is one integer: “int markval” syntax like variable definition: in fact,
behaves just like a variable that is initialized with value of parameter that was
passed at point of invocation

parameter definition can be like any variable declaration, long, short
unsigned, even const.

general form

return: since no value to return, not needed if procedure exit is at end of
definition (single exit)

however, can use multiple returns (like functions) for control-flow purposes
(eg error returns)

general form: function type (possibly void), function name and parameter list
(void indicates none)

multiple parameters in a list, separated by commas

parameter linkage: scalars (all manner of integers; floats) passed by value,
parameter behaves like an initialized local varibale

non-scalars (eg arrays) passed by reference (address of variable is passed):
function can change value -- more on this later

all previous examples, variable all local; no sharing of data between
functions, except for parameters and return values

want to have variables accessible everywhere, in any function

called global variables

1) global variable “mark”, syntax same, defined outside any function

said to have “program scope” (accessible anywhere in program); what we’ve
had up to now is “function scope” (accessible inside a function)

1

definition of grademark: no parameters, no return value; access global
variable

nothing but a big side-effect

something about order of declaration?

Up to now, all source contained in a single file.

In real world, programs composed of many files, often called modules. take
a look at some of these issues.

Notes show a filename comment at top of source-files.

Big part of the issue of compulation-unit management is controlling the
visibility of things, saying what can be seen where. Have to understand
difference between definition and declaration.

Definition say what the thing is, what its scope is, and defines content
(reserves space or lists statements).

Declaration says what it is and what its scope is, omits content. So:

1) definition of program-scope (global) vars. storage is reserved here. visible
everywhere.

2) function declarations: extern means “globally visible”, but not statements
given here, implies must be elsewhere

1

2

definition of main (same source file as previous slide)

roughly speaking, everything must be declared or defined before referenced.
if not, int is assumed to be type -- if subsequent declaration or definition is
different, problem.

Note btw, no standard header files in this module.

next module (sourcefile)

1) declarations of variables: extern means global scope and defined
elsewhere (slightly different meaning)

note array declaration omits size: note really needed, since storage
elsewhere. just need to know its an array.

2) definition of a function that has program scope (global). extern says
global, presence of statement block means that this is the definition.

Use of extern is different for variables and functions. For vars, extern means
defined elsewhere, used only in declarations, not definitions.

For functions, extern means global scope. can be used in definitions and
declarations (actually, its the default).

3) definition of a variable that has file scope: visible within any of the
functions in the module, but not outside this module.

1

2

3

more function definitions. note use of file scope variable and program scope
variables.

personal coding convention: use of capitalized names etc to help distinguish
scope

last module; provides definition of remaining functions.

another set of declarations for the global variables. Rule is, one definition
and many declarations.

1) empty function

1

The output to our program.

Remaining programs here are refinements of the last module. Program was
organized in such a way that the output operations isolated into one module.

Refinement: compute class average. Need more variables to add up marks
and count number in class.

1) definition of new variables. Definitions can occur along-side declarations,
no issue.

2) these vars are initialized. initialization occurs only once in the life of the
execution of a program, at load-time (as program prepared for execution).

1,2

references to variables.

modular development: enhance functionality, replace empty function.

main program stays the same

lovely new output

Next enhancement: write output to a file instead of stdout

1) declare a file variable. static means that it is visible only within this
module.

- example of data hiding, encapsulation. implementation of output module is
independent of other modules, so restricted visibility is appropriate. change
the average-computation variables so that they also are static.

more stuff for third revision

Final revision: change original program to output letter grades instead of
numbers. Need a function that converst value in global variable “avg” to a
letter (represented by a character)

[flip forward slide]

1) usage: invoke grade in parm list, returns char, printf %c directive.

Problem. using Grade() before defined. C assumes integer, creates a
“shadow” or “tentative” definition with integer return-type. When real
definition occurs, error: turned out to be not an int.

2) So, need a forward declaration or function prototype to “define before use”
. equivalent syntax to extern, but use static.

Can also prototype global functions. identical to external declaration -- since
that’s all it is, really.

1

2

So, function will return char, no parameters. Only used within this module.

Can use “static” in the definition of the function, same meaning as variables.
only visible within this module

[go back and look at usage]

lovely new output

