
General introduction -- outline structure of classes

Distribute materials -- advise of individuality of handouts

Interactive classes -- questions welcome, discussion encouraged

Background survey: Windows users, programming, already tried VB

Interest survey: DB, other platforms

VB -- development system for Windows applications

Easy to create sophisticated applications -- interactive, seamless
development environment

MS estimates 75% of all VB apps used for database

Short learning curve -- hours/days instead of weeks/months (e.g.
standard windows API has 3000+ entrypoints)

Disadvantage -- slower applications, restricted range of Windows bells
& whistles (maybe an advantage!)

But -- extensible (can call Windows API functions, create new function
packages

Many alternatives for specific application domains (database,
multimedia, cross-platform) -- VB is a good general-purpose tool. Will
try to arrange guest speakers for some alternatives

Requirements: Windows 3.1 -- for development, double MS estimates
(486, 8Mb); screen resolution (real estate)

Standard vs prof.: prof == standard + DB + bells & whistles

VB provides a design tool to simplify creating forms/windows and
attaching actions

Start VB

Overview of components: VB menubar, toolbox, properties, project
(module list), code windows

write a “press me” program -- nop; don’t show code

GUI objects: buttons, text, lists, pictures, etc. Forms & windows
terminology

VB provides development environment to facilitate creating code to go
with the visual interface

Project management: create executables, manage resources. As
application grows, manage code modules

Save the program in a new directory

Others include simple lists, sliders, pictures, timers, file-system controls

Properties/attributes include colour, text/caption, set/not set, elements
in the list size, fonts, name

Hundreds of different properties, many with restricted ranges

Design tool helps to simplify creation of windows -- object property
window

Grid allows easy alignment of objects on form: adjustable size

Objects have events: click, double-click, change (text), selection (lists),
other specialized ones -- click is most common. These generally not
same as Windows events, simplified

Attach code (actions) to events: display information, read contents of
object, disk-file operations

Flip to development, demo 2, and fiddle: move/change objects -- no
actions, use properties window

use context help for objects

adding actions requires writing code -- VB provides an IDE to help
make coding easier.

colour used for highlighting syntactic elements (keywords, function
names, comments) -- configurable to some degree

local/module/global search/change

module management, code management

IDE is not mandatory but awkward to work with external

IDE not brilliant but generally usable

Example: press me button changes its caption: click event has
procedure associated. Explain how to get to event routines (via object,
via code-window) Explain dropdowns in code-window

Slightly more complex example...

load colour demo, run

look at code for colour-change click -- what are CurrentColour,
MAXCOLOUR, etc

show declarations and explain.

hand-wave about 16 colour function from quickbasic, want full colour
mix of r, g, b

change QBColor to RGBColor, add two zero parms (just varies red)

Observe keyword colour doesn’t change: not correct. Change to “rgb”
(case change?)

Run and lean on return -- dark to light shade of red. Doesn’t work!

change max colour to 255

demolnstrate context help for keywords, functions

hand-wave

mention file types: .mak for project org; .frm for forms and associated
code; .bas for code-only

also: .frx for icons attached to form

not the 1960’s or 1970’ flavour of language

resembles Pascal or C -- full set of control structures (if, while, for,
select, etc..)

procedures & functions, call by reference & call by value (default is
reference)

var declarations optional -- omission strongly discouraged (use “option
explicit”)

can use var-name suffices to show types -- discouraged. Prefer to use
declarations (all done with “dim”)

standard datatypes: integer, long, real, double, string, arrays, user-
defined (Pascal records or C structs)

constant declarations -- readonly

no dynamic memory or pointers, but dynamic run-time arrays

object types and references, object instantiation; no operator
overloading or subclassing

online help is very useful -- use hypertext

Not perfect, but resoundingly successful

MS grossly underestimated market acceptance -- 50-page book of add-
on controls

