
Review common questions and problems from last week

important idea in exercises: consistency of visual information. If
information is presented more than once, should be consistent. Will
see more today with filename displays

be aware that prop. box only shows design-time props., use help for full
details. Review use of F1 help, show TOC discovery path

review procedure declaration and use

Sometimes:

•“Opaque” vs “transparent” backgrounds

shape control has backstyle property -- allows background to be seen
(opaque) or object behind shape to be seen (transparent)

•“Help” information for controls: F1 vs TOC

can use F1 for context-help at any time. Eg information about
properties. Beware that property lists may omit run-time only
properties.

Demonstrate use of help for controls.

terminology: procedure, subroutines, functions, prefer proc=no ret;
func=ret, etc

defined with View menu, “New Procedure”

declare type of value to be returned

subroutines use “call”, functions used in expressions

reference args cannot be passed literals

alternate syntax for subroutines -- looks like built-in statement

recursion is permitted

function results cannot be discarded; must be assigned to something

VB check argument counts, does not check function result assignment

start a program in single step

executing one statement at a time

stepping over procedure/function calls - only applies to user-written
code

immediate: displaying with “?”; setting new values

stopping at arbitrary places with breakpoints

displaying values during execution: debug.print

waiting for events?

create form, button, label, global integer var, dummy proc

form-load set caption

button calls proc,

proc increments global, sets label caption

lists user to select one (or more) items from predetermined set of items

easier for the user; more secure for the developer (restricts range of
input, simplifies input verification)

various types: simple, dropdown, combo, dropdown-combo

combo’s are a combination of list and textbox -- allow selection from list
or entry of text

list features: single or multiple selection, editing assists (ctrl, swipes)

combo features: cut, copy, paste shift-del, shift-ins, ctrl-ins; move-to-
matching-item

vertical scroll-bars automatically added when necessary; can have
horizontal scrolling with multi-column

various properties used to control lists: style, sorted, number items,
currently-selected

array property List contains the items in the list -- operates as an
ordinary array

list maintained (items added or removed, list cleared) using methods

click, change event

Demo to follow...

similar to other programming languages

by default: zero-origin, so 11 elements

user-defined indices

matrices and higher-order structures

varying number of elements: declared with no elements, then
redeclared later when number of elements changes

redimension an existing array and keep current contents: redim
preserve

example program pending

Methods: functions/procedures that are built-in to an object Can
require arguments or not, can return values or not (executesql)

adding an item: item is a string. can associate numeric data using
ItemData:

my_stuff.ItemData(my_stuff.NewIndex)

remove an item, given a string

clear the list: remove all items

for simple list control, click occurs as move up/down (dblclick as
appropriate).

user click to update other fields

combo & dd-combo: change occurs when text changes (not
necessarily click); click occurs with up/down

Example program: 3\1; listdemo

show operation

show load proc

demo delete

comment in debug stmts in slist.click & scombo

high-level functions not built-in

traversing == starting at the beginning and looking at each one

lots of code do

multiple selection -- simple lists only

use array property Selected - true if item selected otherwise false

no guarantees of uniqueness -- programmer must handle

assuming MultiSelect is set

show example program: 3\2; fs-ctrls

note consistency problem

Ok in some cases, prefer to have a traditional functional interface: call a
function and have name returned

Common dialogues: filename (open, save), help, colours, fonts

provide common appearance and operation for all applications

Single object with lots or properties

Property values predefined: use global.bas from constant.txt

Example: build a simple one showing the global.bas creation

create form, place CD

add new module, save as global.bas

open constant.txt, find CD stuff

cut & paste

Example: 3\3; commdlg: switch to predefined one and demonstrate;
look at code: emphasize activation via setting action property

Quick, but inflexible (limited size of input etc)

implemented with functions instead of object -- reason unknown!

show demo 3\4; msgbox

show button click, show global.bas

dialogues seen thus far are OK, but may not be enough -- want to
create our own

a dialogue is just another form

we have seem “modal dialogues” that disable other parts of application

opposite is modeless dialogues, also called modeless forms, allow
many parts of application to be active at the same time

modeless can create problems; if one form shows information that
appears elsewhere, updates not automatic

modal prevents synchronization problems; restricts ui when appropriate

parameter passing not good, must use global variables

construct demo program of stubs (msgboxes etc)

form1 shows form2 modeless (default)

explain show method, add modal (value 1)

demo 3\5; modal; explain unload statement

comment out modal, run, explain!!

VB considers that all forms are present all the time, just can’t be seen.

Show makes them visible (equivalent to setting visible to true)

unload removes a form (opposite is load, but not generally needed -- if
not loaded when references, loaded automatically)

Names of entities (properties, methods) need to be qualified if referred
to from another form

Objects are visible outside a form, but code is not. If code is to be used
in more than one form, must be placed into a code-only module (like
global.bas). Data-sharing occurs with global variables.

