
Review common questions and problems from last week

Exercise: adapt an independent program for use as a dialogue

Not easy -- wish there was a “make VBX” button

Exercise created a copy; can also use in place

Implications for software engineering and development team strategy.

global.bas not reserved

data-structuring techniques

analogous to C structs, Pascal records, (COBOL, PL/1, Asssembler)

“fields”, “elements” with structure

type defines shape; declaration of variable independent

type definitions must occur in code modules, not form modules

dotting operator

array index, then dotting

assign entire structures

types inside types: user-defined, array, etc

sequence of dotting operations

Typical I/O system modelled after DOS file facilities

simple sequential files use character-delimited files (blanks, commas,
quoted strings)

lower-level access for byte-stream access (random)

no ISAM etc, networking facilities from DOS only

databases replacing other than sequential?

third-party stuff.

typical operations

some features require DOS support (SHARE), designed for use in
multiprocessing or networking environments

file_num == file reference, handle; Freefile returns available file number

is required part of text

fundamental operations: get, put, seek

if file is binary, then characters; otherwise fixed-lenght records

record lengths defined by constituent types, can have fixed-length
strings and user-defined types to help define record shape

use version of Len function to return size of entiry

using help: beware of difference between seek method (db object) and
seek statement (does seek) and seek function (returns current position)

won’t deal with random-access in this course

length is 50 + 12 + 2

standard type sizes defined in “visual basic data types” (index entry
“types”)

can use fixed-length string declarations for ordinary variables,
questionable use?

input # reads blank, comma-delimited fields, quoted strings; stream-
oriented

Input reads raw characters (space, comma, NL); must specify number
of characters to read

write # grnerates delimiters, print # does not

automatic type conversions (numeric to char)

Suppose typical responses

Write# places quotes and commas suitable for input#

close particularly important for writing -- flushes files and update
directory entries

difference between close function for files and close method for db
objects

input number uses delimiters

strings containing blanks enclosed in quotations, otherwise quotations
optional

various numeric formats, generally delimited by non-numeric characters

detail rules, see Input # function

typical processing loop; explain while statement

beware of difference between EOF function and EOF property of DB
objects

VB provides low-level interface to mouse events

perform actions based upon mouse movements -- draw lines, position
or objects

popup menus via rmb new Windows feature -- next week

<<<drag&drop handled separately (soon)>>> not

not talking about “business graphics” -- charts, graphs etc. These are
handled by add-on control packages (e.g. professional version has
VBgraph)

Upcoming: graphics: simple shapes, combine with mouse to do
outlining (rubber-banding), line tracing, freehand lines -- one example of
things that can be done

picturebox is one of two objects that support drawing, other is form

line: draw a line or rectangle

circle: circle/ellipse or arc

pset: draw point; point returns colour of current point

cls: clear

currentx, currenty: current points, can be reset (but no visible effect until
something is drawn)

persistent bitmaps: Windows handles redrawing: use AutoRedraw

advantage: much easier (redraw sometimes impossible); disadvantage:
consumes resources (memory)

most applicable to Printer

SavePicture function, form.print method

this slide is not shown

picture1.Line -(1000, 1000), QBColor(5)

picture1.Line -(1000, 1000), QBColor(5), B

picture1.Line -(1000, 1000), QBColor(5), BF

picture1.Line -Step(100, 100), QBColor(4), B

For i = 1 To 5

picture1.Line -Step(100, 100), QBColor(4), B

Next i

For i = 1 To 5

picture1.Line -Step(100, 100), QBColor(4), B

picture1.CurrentY = picture1.CurrentY - 100

Next i

Circle (1000, 1000), 300, , 0, 2 * 3.141592653589, .25

Mouse clicks very generic, special-purpose apps require

more details interaction

Most objects get mouse events, we’ll look only at PictBox

Capture: i.e. only one object at a time gets events

button says which one: bit-mask for left, middle, right

shift indicate state of ctrl-alt-shift keys -- bitmask

constants defined in constant.txt

x, y -- current position of mouse

Example: show mouse location

form, picturebox, labels x: y:

pb mousedown x.caption = x; y.caption = y

sleleton in lect4\mouse

add up-time refresh to previous (copy code to mouseup)

frequency is irregular: depends on system load, speed of movement

lots of mouse_move events happening all the time -- must act on only
the ones we want

typical sequence: down sets switch, move interrogates and acts
accordingly, up resets

example: copy caption updates to move -- unconditional update

add state code and interrogate -- only when pressed

cute Example: (lect4\button)

buttondown: button_moving = True

org_x = X

org_y = Y

buttonmove: If (button_moving) Then

command1.Top = command1.Top + (Y - org_y)

command1.Left = command1.Left + (X - org_x)

End If

buttonup: button_moving = False

Example: new project, form.autoredraw (skeleton in lect4\freehand)

Form.mousedown toggle on, up toggle off

move: pset (x,y),qbc(4)

line (0,0)-(x,y)

line -(x,y)

Enhance to true freehand:

down: tracking = True

startx = x

starty = y

first = True

move: If tracking Then

If (first) Then

form1.Line (startx, starty)-(x, y), QBColor(4)

Else

form1.Line -(x, y)

End If

first = False

End If

skeleton in lect4\stretch

down:tracking = True

startx = x starty = y

first = True

form1.DrawStyle = 2 ‘ dots, 1 is dash

form1.DrawMode = 7 ‘ xor

move: If tracking Then

If (first) Then

form1.Line (startx, starty)-(x, y), QBColor(2)

lastx = x; lasty = y

Else

form1.Line (startx, starty)-(lastx, lasty), QBColor(2)

form1.Line (startx, starty)-(x, y), QBColor(2)

lastx = x; lasty = y

End If

first = False

End If

----------------------------------> continued next page

up: tracking = False

form1.Line (startx, starty)-(lastx, lasty), QBColor(2)

form1.DrawMode = 13 ‘ use the colour as is (copypen)

form1.DrawStyle = 0 ‘ solid line

form1.Line (startx, starty)-(x, y), QBColor(3)

==

Summary:

File processing OK, real apps use a database probably

Graphics methods; could be used for business graphics, but too tedious
-- use a 3rdparty package

Mouse -- interesting, of questionable use unless involved with graphical
applications

