WATCOM Pascal

Educational Environment

Overview

What is Pascal, and why should it be used for teaching
Computer Science?

Requirements for software used for teaching

WATCOM Pascal

History of Pascal

developed by Niklaus Wirth in late 1960s
derived from ALGOL family; predecessor to Modula

Wirth:
“# .. a language suitable for teaching programming as
a systematic discipline based upon certain
fundamental concepts ... [and a] language which [is]
both reliable and efficient”

numerous implementations; many extensions
language standardized by I1SO and ANSI in 1983

standards committees now working towards ”standard”
extensions '

Features of Pascal

small language with concise rules
not too much to learn in order to write significant programs
ability to describe and structure data precisely

sequence control statements: for, while, repeat-until, if,
case

modular program organization: procedures (subroutines) and
functions

names may be of any length

all items must be declared before they are used —— forces
programmer to organize program

variables must be initialized before they are used -— no
"default” values

Data Organization

variables must be declared to be of some type -~ e.g.
var salary : real;

a type states what values a variable may contain

standard types: integer, real, char (character), Boolean

Pascal will not permit a variable to be assigned a value of
the wrong type —— prevents misuse of variables

type compatibility

data structuring facilities: arrays, records, pointers,
programmer-defined types

much of the power of Pascal comes from its ability to
describe data precisely

Programmer—defined Types

a type indicates what values a variable may contain
example: integers are ..-3, -2, -1, 0, 1, 2, 3...

Pascal allows programmer to define new types —— simply
state the values that are to comprise the new type

example:
type TwentiethCentury = 1900..1999;
example:
type days = (mon, tue, wed, thu, fri, sat, sun)
the type days consists of exactly the seven values given

mon, tue ... are constants of the type days, just as 1, 2 .. are
constants of integer type

if a variabie is declared to be of type days, then only those
seven values may be assigned

called an enumerated type

Why Use Programmer—defined Types?

allows better description of data —— if a variable will contain
only numbers from 1900 to 1999, let Pascal enforce

if a variable is to represent days of the week, use symbolic
constants —— more descriptive, much less prone to error

for example, without enumerated types, typical approach
would be to use numeric values, and agree that 1 is
Monday, 2 is Tuesday etc.

error prone: potential disaster if number 8 is used

with enumerated types, such an error is impossible:

type days = (mon, tue, wed, thu, fri, sat, sun);
var payday : days;

Pascal guarantees that payday will contain one of the seven
given values

Pascal is used to describe data precisely; does automatic
verification

Structured (Composite) Types

arrays:
. lists of items of the same type, e.g.
type totals = array[1..10] of real;
. constituent (base) type may be any type: e.qg.
array ... of days;
. similar to other programming languages, may

construct multi-dimensional arrays
records: groups of items of different types, e.g.
type person = record
age : integer;
salary : real;
end;
can form “arrays of records” e.g.

type personnel = array{ 1..100] of person;

eliminate need for “parallel arrays™: in BASIC, would use one
array of integers, another array of reals

more descriptive of natural arrangement of data

other types: pointers, used for dynamic data structure
applications; sets

ability to structure data arbitrarily allows programmer to deal
with data abstractions -- avoid details of implementation
and concentrate on problem

Strings
standard Pascal: arrays of characters

no built-in facilities: cannot read, compare different lengths,
assign different lengths

most common extension in Pascal implementations

WATCOM Pascal allows string manipulation similar to typical
BASIC

standard programs still work correctly

Sequence Control Statements

two classes: repetition and selection

repetition:

while expression do
statement;

repeat
statement;
statement;

until expression

for index := initial to final do
statement;

for index := initial downto final do
statement;

10

selection:

if expression then
statement;

if expression then
statement

else
statement;

case expression of
caselabel : statement;
caselabel : statement;

end;

a common extension for the case statement is the “else”

case: if all other cases fail, the “else” case is used

11

Program Structure

. a program consists of a heading, declarations and
executable statements

program simple(output);
var i : integer;
begin
for i :=1 to 10 do
writeIn(1, i*2)3
end.

. programs may be “broken up” into smaller, isolated pieces:
procedures and functions

procedure power(base : real, exponent : integer);
var index : integer:
result : real;

begin
result := 1;
for index := 1 to exponent do

result := result * base;

writeIn(result)3

end.

. procedures and functions are essential to programming
methodology cailed stepwise refinement

. stepwise refinement: program is divided into many smaller
(and usually simpler) components —- each component may
be written independently of other components

. functions and procedures have structure similar to a
program: heading, declarations, statements

. may be given parameters (values substituted each time);
functions return values

12

Local Declarations

items declared inside a procedure or function are called
local: do not exist until execution of procedure of function
begins, disappear when procedure or function finishes

ability to have local items is useful for data-hiding: allows
the separation of the implementation of a procedure or
function from its definition

procedures and functions may contain local types,
procedures and functions, in addition to local variables

13

Requirements for Teaching Software

typical student (in a classroom}:

. doesn’t know what’s going on (initially, at least)
. not interested in writing “production” software
. is interested in minimizing time to complete task (“get

assignment done”)
. needs feedback
a compiler used for instruction has special requirements
handle all errors
diagnose errors in a manner which .novices can understand

errors should be described in terms of Pascal, not machine
code

simple to use

should not impose restrictions on the language for the sake
of run—time efficiency (if feasible)

must provide fast turn-around -- immediate feedback
enhances learning, facilitates experimentation

should contain facilities which allow programs to be
debugged quickly and effectively

supporting documentation

14

WATCOM Pascal

designed for teaching first-year programming courses at
University of Waterloo

interpreter: compile—time is almost zero; program begins
execution almost immediately

integrated with text editor —— enter program and issue single
command (“run”)

in simplest form, editor can be learned in about one hour -~
no long “learning cycle” before programs can be run

integrated with debugger

full ANSI standard language, no restrictions on name
lengths, sizes of data structures

extension where appropriate: graphics, machine-language
interfacing, strings

implemented on a wide variety of machines and operating

systems: ICON, IBM PC, Commodore 64, DEC PRO, IBM 370
mainframe (VM/SP CMS), DEC VAX mainframe (VMS)

15

Debugging with WATCOM Pascal

debugger is integral part of WATCOM Pascal
invoked automatically if an error occurs

user may press “return” to conclude, or issue commands to
determine what happened

debugger may be invoked by pressing “break” (or
equivalent) at any time during execution

standard procedure pause can invoke debugger under
program control

when invoked (by whatever method), debugger displays
error message and source line

choice of action: quit; continue (if not an error); execute a
Pascal statement; step through execution; redisplay status

step:

. allows execution of a single statement each time
"return” is pressed

. may be used to trace program execution

execute:

. allows any Pascal statement to be executed

. may display values, assign values to variables, invoke

procedures or functions

16

L]

An Example

program bug(output); (* sum odd numbers from 1 to 100 *)
var index : integer;
total : integer;

begin
index := 1;
total := 0;
while(index <> 100)do
begin
total := total + i;
index := index + 23
end;
writeln(total);
end.

variable i was not declared
index will never be equal to 100
program will execute forevert

run
Execution begins...

*%% Frror: 'i' not previously defined

Error executing line 9 in ‘<main block>'.
total := total + i;

Debug?

(CR)

17

(change i to index)

run

Execution begins...

Break executing 1ine 11 in '<main block>'.

end;
Debug?
e writeIn{ index)
6131
Debug?
W
Break executing Tine 11 in '<main block>'.
end;
Debug?
step
begin (1ine 8 in '<main block>')
(CR)
total := total + index: (1ine 9 in '<main block>")
(CR)
index := index + 2; (1ine 10 in '<main block>")
(CR)
end; (1ine 11 in '<main block>')
(CR)
begin (1ine 8 in '<main block>')
(CR)
total := total + index; (1ine 9 in '<main block>')
(CR)
index := index + 2; (1ine 10 in '<main block>"')
(CR)

end; (line 11 in '<main block>')

e writeln(index)
6135

Debug?
e index := 100
Debug?
continue

9406489

...execution ends

18

(change <> to <=)

run

Execution begins...
2500

...2xecution ends

19

Support Material

WATCOM Pascal Primer and Reference

WATCOM Pascal User's Guide for ...

WATCOM Pascal for the Commodore 64

other software:
. WATCOM Pascal compiler

"production” compiler companion

to the

interpreter —— generate native code for speed

and run—time efficiency

same language features as interpreter

available for ICON, IBM VM/SP CMS, DEC

VAX/VMS

Waterloo Pascal “load-and—-go” compiler

generates code and executes directly without

need for linkers, etc.

. very fast compilation rate

designed primarily for large-scale timesharing
systems: VM/SP CMS, MVS/TSO, VMS, UNIX

20

Summary
Pascal is a good language for teaching computer science

language features which support and encourage good
design, modular program construction and data structuring

language processors used for teaching have special
requirements

teaching software must aid the student as much as possible
WATCOM Pascal Interpreter is a Pascal processor designed

to be used in teaching environments -- responsive, full
diagnostics and debugging facilities

21

