Technology Briefing:
SQL
and
Relational Databases

Presented to

May 23, 1996

Trevor Grove
Research Associate
Computer Systems Group
University of Waterloo

Outline

What is a relational database?

Understanding the technology behind current database

practices: SQL databases and application development
Client-server concepts

Current trends and new technologies

© Copryrignt 1996 Travor R Grove

This lecture: three parts.

Why: too much data, too little organization. Knowledge, information, data (data = raw facts,
information = organized data, knowledge = applied information). In “information age”, where
information & knowledge is currency of wealth, want to maximize effectiveness of data, infor and
knowledge to get most we can.

SQL SQL is Structured Query Language (pronounced “sequel” by some...). Once existing data is
organized, need to be able to add to it, retrieve it, work with it. SQL is a standard language used to
interact with relational DBs.

What is a relational database?

» What is a database?

— store and retrieve data
— separation of data from programs
— independent control of data via a “database management
system”™-a DBMS
» A relational database is a DBMS that uses the

“relational” mathematical model to organize the data

— concise, theoretical foundation
— mature technology (20+ years)

© Copyright 1086 Travor R Grove

Before we can say what a relational database is, need to understand what any kind of database is.

All computer programs are sequences of instructions that manipulate data: eg a program that adds 2
+ 3 is manipulating data, so is it a database?

No. We call a database a program that manages data for other programs. Eg our adding program
would ask the database for the first number, then the second, and then would do the arithmetic.

In this way we achive a separation of the data from the programs that manipulate the data.
Another example

Concepts: Think of manual filing system. Design a filing system to store data and information,
facilitate retrieval. searching not always so obvious, so organize system to find stuff with only one or
two probes. But consider example: bought a toaster, paid with credit-card. need to file paperwork.
Have: file for house, files for credit-card. also file for warranty cards (but proof-of-purchase must
accompany waranty card). How to file? Everything in CC file implies must remember how paid.
Everything in house, gets too big, becomes shoe-box. Warranty file? maybe, but it has warranty for
evertyhing, half of which are expired Three choices, how to choose? Choosing any single place
makes retrieval harder (have to remember where things are) Could make copies and file everywhere:
increases likelihood of retrieval, but very redundant. Could store one place, leave little reminders
everyrwhere else. Ok, but a pain.

Computer-based systems have some of the same problems, but have extra abilities esp wrt searching
and creating reminders. So, design of computer-based systems probably not be same as manual
systems. Need to look at data storage and retrieval with a view to computer-based systems. We will
look at a form of data organization called relational model (hence relational DB).

We’'ll comback to this in a minute
So a relational database is just a database that ...

We need to understand the principles behind databases in general before we worry about relational
ones.

Buzzwords, TLAs and FLASs

DBMS
relational
schema

DDL

(B]\V/|

SQL
constraints
referential integrity
data dictionary
3NF, BCNF
client—server

& Copyright 1995 Travor R Grove

data independence
views

relations
attributes
domains

atomic

ESQL

ODBC

ER modelling
data warehousing
O0DB

Applications of database technology

“Classic’;

 inventory control; payroll
« electronic funds transfer; reservations systems

Recent:

» computer aided design (CAD); computer aided software
engineering (CASE), development environments

geographic/environmental information systems (GIS,
EIS); telecommunications systems (AIN)

document storage and retreival

© Copyright 1998 Trevor R Grove

Computing and DB have gone together since almost “day 17 . They maybe
haven’t been obvious or apparent, but they've

Classical applications like inventory and payroll. Not online, but still a
database. Earliest online systems included reservations systems like Sabre
and others developed for air-travel industry, funds transfer systems at
insitutuional level and retail level in ATMs

Newer applications bring complete database systems to desktop for single-
use, even embedded into other single-use applications.

Examples include sw-eng systems that use databases to store information
about programs and systems. some even store source-code in database.

CAD and GIS systems represent drawings as points, line, shapes; use DB to
store and retrieve these. Organize data into layers, can present drawings
with different detail levels etc.

Telecommunications: very fast real-time DB. (AIN = Advanced Intelligent
Network). Put DB apps in phone switch. Eg “310” humbers. Process
transactions between time finish dialing and time of first ring.

About data

» Data is a commodity
= Data vs information vs knowledge

— data is formatted and organized

— hierarchy:
data — information
— knowledge

knowledge
information
data

« Data is important:
— need to remember data reliably
— need to manipulate data easily

2 Copyright 1998 Travor B Grave

If we were discussing a business that dealt with widjets, it would be appripriate to understand widjets:
size, shape, cost, lifespan

View data in the same light -- it's a commodity that has properties like any other commodity. Now,
some corporate data fulfills a record-keeping role, keeping track of corporate revenue and expenses.
However, the terms “information age. info society, knowledge-based business” etc treat information as
a corporate resource that must be treated like iron-ore to a steel manufacturer. Need to understand
data bedore we can understand databases.

So, what can we say about data? First of all, terminology: data, information & knowledge are banterd
about interchangeable, but actually have very precise meanings. Data is raw unstructured facts,
numbers. Information is data that has been organized. Knowledge is information that has been
applied. Eg. if | say that sales data is 87, 24, 36, 17, 55, mostly useless as is, but necessary to
produce information. Eg information 24, 17, 36, 55, 87 is data that has been organized in
chronological order, it is more useful. The knowlege is that sales decreased but then rebounded and
have been increasing.

So data is:

formatted: text (characters), numbers; also tables, charts, images: i.e. information. Must be able to
store format and organizational information with the data

important: must be accurate (pointless if not); must be reliable (stored data must be guaranteed).
must be able to get at it when we need it (i.e. online, not offline: fiche is a reliable storage medium,
but not very useful for interactive use. writeable CDs are becoming interesting here)

...continued

There are large amounts of data:

— need to use mass store

many users require simultaneous access to data:
— need concurrency control

many diverse applications access the data:
— need security (internal and external)

need data independence

B Copyright 1998 Travor B Grove:

large amounts: gigabytes and terabytes and ?. Even thought computers are
good at searching, vast amoust of data means need strategies for getting at
data efficiently[CocaCola ancedotal story))

simultaneous: online systems must handle simultaneous access. classic
examples from banking, reservations result in overbooking, overdrawing etc.

diverse: different apps want access to the same data or portions. must be
able to restrict access

Any individual application could provide these features,. but multiple
applications means duplication means increased costs, decreased reliability,
inconsistency. Woulf like to gather together the solutions and
implementation of these principles into a single place, so individual apps
don’'t need it. Call this idea data independence (apps are independent of
data manipulation)

Database management

Basic idea:

» remove details related to data storage and access
from application programs

concentrate those functions in single subsystem: the
Database Management System (DBMS)

have all applications access data through the DBMS

& Copyright 1996 Travor R Grove

So, this idea of data independence is what motivates the development of
independent database systems; brings us back to our discussion of DBMSs

Remove, as much as practical, data storage and retrieval from individual
applications.

Concentrate this functionality into a single program (collection of programs).
Refer to this as a DB mgmt sys.

Then, make application programs get at data through the DMBS. Treat
DBMS as a black-box to the rest of the world.

Important to understand that we want a “clean break” between app and
DBMS. In current op-sys, DBMS implemented as a system service. Like to
think of sending a message (eg a request for some data) and receiving a
reply (eg with the data we requested)

...continued

Advantages:

« uncontrolled redundancy can be reduced
less risk of inconsistency
data integrity can be maintained
access restrictions can be applied
conflicting requirements can be balanced

But most importantly:

= a higher degree of data independence can be
achieved

& Copyright 1995 Travor R Grove

Separation facilitates some immediate advantages:

DBMS can reduce redundancy by creating “see elsewhere” notes (think of
manual filing system)

Reduced redundancy means less inconsistency: Inconsistency arises when
data duplication for retreival convenience -- because data stored in a single
place, no change of being inconsistent

Integrity: DBMS can create backups, checkpoints, logs transparently to
apps (in waiting until needed). Individual apps could do this, but centralized
in DBMS means can leverage the investment into all apps.

Restrictions. DBMS is a single point of access, so can add security easily
(eg user-names and passwords, encryption).

Conflicts: eg concurrency, performance. Multiple simultaneous applications
through single DMBS: can handle concurrency by serializing (only allowing
one app access). performance: DBMS can guarantee certain levels of
response to apps, facilitte priorities.

But: DBMS lets us achieve data-independence: separation of users of data
from definition and storage of data.

Look at this idea of data independence in more detail...

Program—data independence

Objective:

» to isolate application programs as much as possible
from changes to:
— data
— descriptions of data

Two kinds of data independence:

« physical data independence (application programs

immune to changes in storage structures)

» logical data independence (application programs
immune to changes in data descriptions)

& Copyright 1995 Travor R Grove

Seems like separating data from application code is good, has many
advantages (really just an extension of the concept of separating code and
data that is preached by many programming philosophies)

But, thereare different aspects of independence:

- the data itself. apps shouldn’t need to worry about how to access data (eg
finding it, getting it, For a table, is it stored row-by-row or column by column?
How many columns. column ordering.)

- descriptions of the data ie the format/type of the data. Eg is the data
characters, numbers, bitmaps? Clearly, if the description of a given datum
used by a pgm changes, the pgm must change. But, other pgms need not
be aware.

Formally, we identify two kinds of data independence: physical, which lets
pgms be independent of how the data is stored onto its physical media; and
logical, which is lets pgms ignore organization of the data.

So, a pgm that is data independent doesnt care where DMBS stores data, or
how DBMS stores or accesses, or what other data/pgms DBMS is managing

...continued

Examples of changes in storage structures:
» data encoding

* record structure

» file structure

Data dependence is expensive because changes in the

way data is stored or described requires changes in
application programs.

Appropriate data independence can provide some
degree of vendor independence for DBMS software and
application development software, avoiding problems
associated with proprietary solutions.

& Copyright 1996 Travor R Grove

Some egs of things that we don’t have to worry about if we have
independence:

- data encoding eg character sets, numeric representation (eg big/little
endian, fp)

- record structure: how data is organized into records and fields. we just
say the name of the firld we want, don’t care about anything else.

- file structure: how files are stored. sequential, random, keyed, indexed...
up to DMBS to decide, maintain

Last word (for now): without data independence, every time one of these
items changes, every application program must change. in complex DP
environments where data is shared among many apps, cost of pgm
maintenance goes up.

Brief history of data management

First generation (50’s and 60’s), files on tape:

batch processing
sequential files on tape
input on punched cards
growing application base

& Copyright 1996 Travor R Grove

As long as there has been data, it has been managed, sometime informally
(or subconsciously)

In early systems, punch-card and tape based -- not often considered a DB,
but certainly fits the general definition. Issues like security, concurrency non-
existent. application base relatively small; maintenance due to
reorganization not typically a problem

As computing capacity grows, application complexity and sophictication
increases. Deployment of ramdon-access disks, permanently-mounted file-
systems. Beginnings of recognition of need for separation of applications
from underlying data. development of access methods to improve
performance and increase capabilities (searching via index and hash files
eg). with establishment of permament file systems and structures,
application base grows faster. beginnigs of interactive systems requiring
interactive response-times

...continued

Second generation (60’s), files on disk:

disks enabled random access files

new access methods (ISAM, hash files) were
developed

mostly batch with some interactive processing
independent application systems with separate files
growing application base

& Copyright 1996 Travor R Grove

As long as there has been data, it has been managed, sometime informally
(or subconsciously)

In early systems, punch-card and tape based -- not often considered a DB,
but certainly fits the general definition. Issues like security, concurrency non-
existent. application base relatively small; maintenance due to
reorganization not typically a problem

As computing capacity grows, application complexity and sophictication
increases. Deployment of ramdon-access disks, permanently-mounted file-
systems. Beginnings of recognition of need for separation of applications
from underlying data. development of access methods to improve
performance and increase capabilities (searching via index and hash files
eg). with establishment of permament file systems and structures,
application base grows faster. beginnigs of interactive systems requiring
interactive response-times

...continued

As application base grows:

* many shared files

* a multitude of file structures

* a need to exchange data between applications

Variety of problems:
redundancy: multiple copies
inconsistency: independent updates
inaccuracy: concurrent update mishandled
incompatibility: multiple formats, constraints
insecurity: proliferation
inaudability: poor chain of responsibility

« inflexibility: changes difficult to apply

& Copyright 1996 Travor R Grove

expliosive industry growth creates problems. applications reinvent the wheel
over and over again, need to share of data (eg financial reports, statistical
analyses of same data) , but hard to do.

Lots of problems: all the classics. each app would access and update data,
cause consistency and accuracy problems. attempts to resolve these often
used multiple copies of data, but then had to figure out how to reconcile
these copies.

Data access techinques varied, complex to implement, harder to change.
Duplication makes it hard to keep track of data, leads to security concerns
Overall, expensiveand precarious

.continued

Third generation (mid 60’s and 70’s), early database
systems:

+ beginning to separate between logical view and
physical implementation

» network model and hierarchical model introduced
« first batch oriented; on-line support added later

+ transaction management added (concurrency
control, recovery)

= access control facilities provided

Problems with ad-hoc approaches recognized, formal DBMS developed to
improve situation -- first attempts at data-independence

1968 ibm’s IMS (Info mgmt sys): hierarchical data model, where data model
is a hierarchy. information is viewed as being composed of smaller pieces.
Eg: auto mfg composed of corporate, mfg and dealers; corporate composed
of finance, engineering, marketing; dealers composed of regions; regions
composed of dealers; dealers composed of sales dept, service dept; sales
composed of individual salespeople.

To get from top to information about sales staff, traverse levels in hierarchy
==> need to know how to navigate around the hierarchy.

~1971 cullinet's IDMS: network data model, based on industry “codasyl”

report. generalized version of hierarchical model. same top and bottom

(leaf nodes), but more that one set of connections. a little better at some
kinds of data structures.

[hierarchical: directed tree; network: acyclic directed graph]

In both cases, retrieving data (aka sending a query to the DMBS) queries
really hard to create, structures hard to change, queries change if structure
changes.

But: still in use [IMS especially].

Because these systems provided single interface point, addition of
concurrency, integrity features possible. with transaction (sending a
message and receiving a reply), DMBS could do transaction management
to resolve these problems. Also provided ability to add security/access
control.

...continued

Fourth generation (80’s), relational technology:

simple, solid conceptual model

strict separation of logical view and physical
implementation

powerful, set-oriented query languages (SQL)
distributed databases emerging

& Copyright 1996 Travor R Grove

4th: experience with hierarchical DBMS, esp with difficulty in forming queries
to retrieve data, led to research by ibm into better ways to do queries.
research prototype call SEQUEL created in mid-late-70.

SEQUEL based on a organizational model called relational. relational model
has very strict mathematical basis (relational algebra [CODD 1970] and set
theory)

SEQUEL product evolved into SQL, which is a language for describing and
querying databases. SQL statements are completely independent of
implementation of data: say what you want, let DMBS figure out how to get
it. finally achieve true data independence.

Relational DB organization and SQL are focus of this course.

distributed db (where pieces of one DB are spread out onto different
machines) emerge as computing hardware price/performance improves
(workstations etc).

...continued

Fifth generation (90’s), post-relational systems:

added functionality, more complex data (temporal,
spatial)

serving a broader class of applications
object-oriented systems

multidatabase systems

nomadic (remote) databases

& Copyright 1995 Travor R Grove

Sth: Current trends: DBMS everywhere, used for “non-traditional” data like
time, space (eg adding “when” information to data; storing geographic
information and retrieving base on “where”).

Buzzword the rest.

Non-applicibility of databases

& Copyright 1995 Travor R Grove

Are there any obvious areas where databases are not useful?

No. Everything has data; the better organized and controlled the data, the
more useful it will be and the more successful applications will be.

DBMS considerations

« Data organization and manipulation
» Functional requirements

» User classifications

& Copyright 1996 Travor R Grove

There are many features and operating characteristice that we want a DBMS
to have.

1) remember that data independence is important (inprove reliability,
consistency, protect investments). Need to organize data & develop
applications to ensure independence.

2) Generally, want DBMS to look after data. what are some of the details of
functional requirements of a DBMS

3) In the final analysis, a DBMS and its set of applications are tools that
people use to get the job done. Varies from administrative/office support to
executive to technical. Each of these has different requirements and
methods of working

The “three-schema” architecture

schema (or scheme): description of data contents,
structure, and possibly other aspects of a database

external schema (view): describes data as seen by an
application program or by an end user.

conceptual schema: describes the base logical
structure of all data.

internal schema: describes how the database is
physically encoded, including selection of files,
indexes, etc.

& Copyright 1996 Travor R Grove

First thing a DBMS must do is let us create a description of data and
information (data and its structure).

Remember the data independence goal. Following a standard technique in
software, use several well-defined layers of definition to implement
independence.

Typical layering consists of three layers. Called “schema”.

1: has nothing to do with actual physical organization. says what we want in
any particular circumstance.

2: full structure. external schema may be restricted by security, performance
considerations etc. still has nothing to do with physical.

3: physical organization. has nothing to do with users or how data is
presented, used. Nuts and bolts of file organization

These are defined to facilitate program-data independence.

...continued

« separation of external schema from conceptual schema
enables logical data independence

+ separation of conceptual schema from internal schema
enables physical data independence

» database schema (intention) is different from database
instance (extension)

& Copyright 1996 Travor R Grove

external vs conceptual == logical independence. Eg we can add new items
to conceptual schema without affecting existing aplications

conceptual vs internal == physical independence. Eg create an index for
better retrieval speed doesn’t affect coceptual schema.

during discussion, may need to distinguish between schema and instance
(design versus implementation)

(picture to follow)

Schemas are just descriptions, they can be applied to anything. Once
schema can be applied to many different DBMSs. The three schema

architecture can be applied to any DBMS, although it fits very nicely with
relational model (coming up)

logical
data indep

physical
data indep

...continued

Application 1 | Application 2 Application 3

#-

Conceptual Level

—— {
Internal Schema
Database
SRy

& Copyright 1996 Travor R Grove

a picture is worth 1000 words:

applications each get a view (ie an external schema), which is derived from
the conceptual schema. internal schema says how to do physical
organization on media

consider that the DBMS is everything between dotted lines

The database: not yet well defined, lots more to say. Informally, think of
database as collection of data organized into tables (rows and columns) --
think of a spreadsheet. this tabular organization is a fundamental to the
ideas of relational databases.

external
schema

conceptual
schemal

internal
schema

Interface to the DBMS

Data Definition Language (DDL)
for specifying schemas

may have different DDLs for external, conceptual and
internal schemas

information is stored in the data dictionary

© Copyright 1998 Trevor A. Grova

So we have the idea of three separate scehmas for a database. How do we
write these down and get the DBMS to do something?

DBMS must provide a definition language, called a DDL. DDL says what the
structure of the DB is, what the datatypes are etc.

Note that all this is, is a language, allows us to write down definitions and
give them to the DBMS. Don’t use programming-language-style constructs,
because they tend to defeat independents. We’'ll clarify this in a minute.

DBMS must provide data dictionary aka catalog to store DDL for a DB

...continued

Data Manipulation Language (DML)

« for specifying data queries and updates

* two general ways of querying and updating a database
— through “stand alone™ DML facilities
— from within application programs
« two kinds of DMLs
— navigational (one record at a time)
— non-navigational

© Copyright 1998 Trevor A. Grova

On top of the DDL, have a DML -- data manipulation language -- for “doing
stuff” to the database like adding, retreiving, modifying, deleting data;
controlling the DMBS, establishing security, performance tuning.

DML used from application programs, or from “command interface” (type
commands directly at DBMS

Two kinds of DML: user/programmer must know how to get to data
(navigational), or non-navigational (say what you want). Think of
hierarchical/network db.

Note: these things don’t have to be fancy; a paper description of a DB
meets the requirements for a DDL. We haven'’t said anything about any
particular DBMS yet. DDL and DML don’t imply relational.

Components of a DBMS
(oL

,

DML Compiler DDL
Compiler

Query Optimizer

Stored Data Manager

Compiled Data
DML Dictiona

another 1000-word picture.

DDL get created, fed into program that processes it and produces a
description of the DB (or, what the DB would be if an instance were creat ed
(instantiated)).

Users and pgms then use DML to do things. Will instansiate the DB from its
schema, add some data (use a data manager to control disk/backing-store),
do queries (might optimize them for speed).

DML can be processed on the fly, or processed into a stored form (typical
separation is canned applications vs interactive ad-hoc queries)

Functional requirements for a DBMS

» provide data definition facilities:
— define a data definition language (DDL)

— provide a user-accessible catalog (data dictionary)
(database should be self-describing)

« provide facilities for storing, retrieving and updating data:
— define a data manipulation language (DML)
= support multiple views of data (user views):

— end user or application should see only the data needed,
and in form required

& Copyright 1996 Travor R Grove

We've said how to describe the DB to get independence (three-schema
architecture); we’ve defined the communication mechanisms with the DBMS
(ie said that we will have separate DDL and DML). Try to outline some
specifics of what the DBMS should (ie functional view).

Obviously, DBMS must allow DB to be defined, but esp want this definition to
be accessible to users. Want DBMS structure to be definable with its own
DDL.

Obviously, DMBS must store, aretrieve and modify data. But, remebmer
external scehma: want to be able to present different views of data to
different users. users should get subsets of data per request (eg only the
columns fields)

...continued

» provide facilities for specifying integrity constraints
(integrity constraint < update validation checks):
— primary key constraints (identity integrity)
— foreign key constraints (referential integrity)
— more general constraints

« provide facilities for controlling access to data:
— prevent unauthorized access and update
« allow simultaneous access and update by multiple users:

— provide a concurrency control mechanism

© Copynght 1868 Trevor R Grove

"Integrity constraints", "Referential integrity" -- fancy terms, just mean that
we want to be able to put restrictions on the stuff in the rows and columns of
the database. Eg might want to say that a certain field is supposed to
contain numbers from 1..10: an integrity constraint is a DBMS feature that
puts a "guard" on the field and notifies user if someone attempt to put a
number outside the range into the field.

Referential integrity: says that a data value uesd in one place is defined
elsewhere in another field. Don't worry about the terminology.

Could impose these restrictions in apps, but then every app woould have to
doit. Use the DMBS to check data automatically whenever input or update
occurs.

Clearly, DBMS is right place to implement security, cnetral (single) point of
access. Administrators can impose restrictions on individual users or apps.
Otherwise, hard to imagine: put security checking into every app? (too
insecure) System service? (too much) Trusted users (login security)? (not
always available)

Concurrency is even more compelling: individual apps/users ought not to
even know about others.

...continued
» support (logical) transactions:

— a sequence of operations to be performed as an atomic
action

— all operations are performed or none
— equivalent to performing the operations instantaneously
« provide facilities for database recovery:

— must never lose the database, for whatever reason
- bring the database back to a consistent state after a failure
(disk failure, faulty program, earth quake,...)
« provide facilities for database maintenance (utilities):

— maintenance operations: redefine, unload, reload, mass
insertion and deletion, validation, reorganization,...
(preferably without needing to shut down system)

& Copyright 1996 Travor R Grove

Other function requirements:

transactions: want to be able to gather together a bunch of operations into a
single batch. batch can't be subdivided (atomic); either finished completely,
or not at all (atomic) (no partially-finished batches)

db recovery: bottom line: must never "lose the big picture" -- might lose little
bits, (eg today's transactions), but DBMS must provide checkpointing,
logging, whatever, that lets us recover from any problems.

utility functions: all the mundane DB stuff that has to be there: bulk loading,
data rollout & rollin, reorganizations. Want to be alble to do as much as
possible with "live" systems (if the need arises).

Types of users

End user

naive: accesses DBMS
through menus

sophisticated: writes ad-

...application developer

» (analyst) Develops
application specifications

— using DDL to define

application views
— using CASE tool

hoc queries using DML

Application developer

* (programmer) Implements
applications to access the
database
— using 3GL and

embedded DML
— using 4GL

& Copyright 1995 Travor R Grove 29

Database administrator
(DBA)

Database system
implementor/vendor

Have been mentioning DBMS users informally. There are several distinct
types whos roles should be clearly identified.

End-users: naive: use applications, typically menu-driven or otherwise
isolate user from DB structure. requires no knowledge of DML.

advanced: knowledge of DML, uses a DML-based tool to form queries and
do other operations. perhaps book's use of "casual” is better than
sophisticated. has knowledge of external and conceptual schemas

Developers: implementation of apps. various technologies; traditional
programming lang (3GL) with DML embedded into programs (typically
functions calls, more on this later), or 4GL app generator like powerbuilder,
SQL-windows (ie the tool generates the DML from specifications)

analysis, use DDL to construct views for use by applications. CASE tools to
help generate diagrams, test definitions etc. Creates external schema given
conceptual schema

DBA -- next page

implementor - person who creates DBMS system; knows schemas for the
DBMS (remember self-defining)

Role of a database administrator

manages conceptual schema

assists with application view integration
monitors overall performance of DBMS
defines internal schema

loads and reformats database

is responsible for security and reliability

& Copyright 1995 Travor R Grove

pretty must as stated.

analyses data, defines conceptual schema to meet varying (often conflicting)
needs: storage efficiency, response time

Overview of SQL

Structured Query Language (SQL, sometimes
pronounced “sequel”)

ISO 9075, an international standard for relational
database systems

the standard is evolving:

— (1986) Initial version

— (1989) Most commercial products conform to this
version

— (1992) SQL2 (three levels of conformity ~ 600 pages)
-~ (?) SQL3 (under development ~ 1200 pages)

& Copyright 1996 Travor R Grove

the book claims that SQL is not "Structured Query Language" and that
"sequel" pronounciation is not correct ... oh well

Strictly: SQL is a language used to control and query databases. In 99.9%
of cases it is used with relational databases, although this is not necesary
(eg sql front-end for db3 on PCs ~1990) .

Mentioned earlier: origins mid-70s. based on mathematical system called
relational algebra described 1970 or so by E.F.Codd. Purpose was to
demostrate feasibility of this kind of language for DB interaction. IBM
developed prototype systems using relational model, SQL evolved as the de-
facto standard for query languages for relational DBs.

Since then, international standardization community has been busy...

...continued

Main features:

powerful table and view DDL
integrity constraints in conceptual schema
DML can be embedded in various programming

languages

transaction control

authorization sublanguage/model

implementation independent (not vendor-controlled)

& Copyright 1996 Travor R Grove

SQL contains features to address most of the requirements we gave earlier:
1)itis a DDL and a DML. it is not a DBMS product

2) DDL part supportd integrity contraints (ability to restrict contents of fields
in the DB)

3) DML is defined so that is can be used interactively by casual users, or
embedded into programming languages

4) DML supports concept of complex transactions (batching together a
sequence of commands into a single unit).

5) DML also provide a security model (userids, passwords, permissions on
subsets of database (eg table by table))

6) SQL is independent of any particular vendor’s implementation. there may
be slight variabtions, but mostly standardized

...continued

Application 1 | |Application2 Application 3
..................................... 57950, e A . (eSmos e

Conceptual Level

Internal Schema

Database

& Copyright 1995 Travor R Grove

similar to previous: top are users and apps, bottom is physical storage.
SQL is the stuff in the middle, but does not include internal schema.

SQL is a language used to define and interact: it officially has nothing to to
with the actual implementation (officially, but obviously relational DBs and
SQL evolved together, so there has always been some influence).

Underlying relational model

Example relational database for a credit card company

Toronto

Montreal
Waterloo

25.15
Customer 2014.00

150.00

960115
Transaction 960116
960115
960120
960125

& Copyrignt 1996 Trovor R Grova

sidetrack for a moment: have mentioned the notion of "tables" as the basis
for relational DB. Will clarify these ideas now.

Shown is an eg of a relational database:
- 3 tables, each has a name

- Tables are composed of rows and columns. each column has a name.
each row can be distinguished from each other, somehow (some
combinations of the columns is unique). the set of columns (might be only
one) is called the primary key, and its name is underlined.

The number of columns in a table is fixed; the number of rows varies.

columns from one table might be used in another table (eg vno in vendor to
vno in transaction). if we assume that the "vendor" table is the defining point,
would want to restrict contents of the vno column in "transaction" so that the
values exist in "vendor" [this is referential integrity]

Why is this a relational DB and not a set of spreadsheets? Nothing apparent
from this eg, but tables are very carefully composed.

The SQL DDL

» used for defining tables (conceptual schema), views
(external schema)

» example:
create table Vendor
(Vno INTEGER not null,
Vname VARCHAR (20) , attribute domain
City VARCHAR (10) ,
Vbal DECIMAL(10,2),
primary key (Vno));

€ Copynght 1956 Traver R Grove

Back to SQL

one of the things is must do is be a DDL for DB, to define conceptual and
external schemas. here is the SQL DDL for the credit-card-company
database.

DDL to define the tables in the conceptual schema, explain:
keywords and identifiers,

column names

data type keywords

primary key says the name of the column(s) that distiguish the row

"not null" unless otherwis specified, column values can be omitted (ie null),
"not null" means cannot be omitted - common for primary keys

Appearance is much like a programming language struct/record definition.
Remember terminology, though: columns are attributes of the tuple, so this
defines a tuple. datatypes are really attribute domains (set of possible
values that an attribute can be).

The SQL DML

SQL has a non-navigational DML

E.g. “Find names and provinces of customers who owe
more than $1000 to the company.”

select Cname, Prov
from Customer
where Cbal > 1000;

E.g. “List the names of the customers who live in Ontario
and whose balance is over 80% of their balance limit.”

select Cname
from Customer
where Prov = 'Ont' and
Ehat > 08 * Elimit;

& Copyright 1996 Travor R Grove

Have looked at the DDL for defining database schema; turn our attention to
the DML that we use to manipulate data in the DB (insert, retrieve, update).

First and formost, the SQL DML is not navigational -- to use the DML you
don't have to know anything about the conceptual schema, deninitely not the
internal schema. how tables are arranged and stored is irrelevant to DML
users.

So eg, want to find ...; use the given DML statement "select". saywhat
attributes we want, what relation contains the information, and any
constraints on the attributes.

Note once again very programming-language-ish.

The result of this query is another table that has two columns (cname and
prov) and as many rows as appropriate to meet the condition of the “where”
clause

...continued

« Other SQL DML examples:

insert into Customer
values (104, 'Trevor', 'ON',
0, 4000) ;
delete from Customer
where Cname = 'Smith';

delete from Transaction;

update Customer set Cbal =
where AccNum = 102;

update Customer set Climit = Climit + 100;

& Copyright 1995 Travor R Grove

Another example, showing more complex expression.

Thus far...

Data is important
Data is structured

Data should be maintained independent of the
applications that use it

DBMSs are independent systems that “own” data and
provide and control access

SQL is an ISO-standard, vendor-independent means of
defining (DDL) and manipulating (DML) data in a DBMS

SQL was developed in conjunction with relational
DBMS

& Copyright 1995 Travor R Grove

Relational databases

» Basic concepts and operations of the relational model

« Using SQL to exploit the relational model

Warning:

Excessive mathematics and formalisms following!

& Copyright 1995 Travor R Grove

Relational terminology

Attribute: a column
Relation schema: table heading
Domain: set of allowed values for a column

Null value: special column value meaning “not known”,
“not applicable”

Tuple: arow (a set of column values)

Relation: a table (a set of rows)

Relational database: a set of tables

Intention of a relation: the design of a table
Extension of a relation: the actual data in a table

Referential integrity: consistency of data between
tables

© Copyright 1998 Trevoe R Grove

Concepts are clear; formal study unfortunately requires lots of terminology (!, mathrmatical basis) So,
formally:

- call a table a relation, it relates (connects) rows and columns. A database is therefore a collection of
relations (hence relational database). Relation from mathematics -- connection between two entities.

- call a row a tuple, a bunch of column values. all tuples have the same number of values. Eg customer
is cust#, name, location, balance, limit

- column (ie each of the things in a row) is an attribute -- ie a property (so a row is a collection of
attributes). a row (collection of attributes) is an element of the relation. Eg a row from the vendor table
is a vendor; vendors have number, name, city balance. Can restate tuple as "collection of attribute
values"

- columns (attributes), which are properties of members of tuples, are from s set of possible values.

Eg a balance is a currency amount, which is a number >= 0 with 2 decimal places. A name is any
character string up to (say) 25 characters in length. The set of possible values for an attribute is called
the domain of the attribute.

Important: attribute values must be single values, can't have more than one. Eg in a relation (table)
called "person”, might be tempted to have an attribute (column) called "children", which would contain
zero or more children's names. No good -- that would be more than one thing. have to do it another
way (later)

Intention: the “shape” of a database
Extension: the actual data; an intention that has been “filled up”

Diagrammatic conventions

Vendor
Vno Vname City Vbal

0]

Vendor

& Copyright 1996 Travor R Grove

Conventional to use diagrams to described databases. Preceding table
diagrams are handy:

table name, attribute names, underline the attribute(s) (one or more) that is
guaranteed to be unique for the tuples.

another style of diagram that often is used to show the dependencies
between attributes in relation (the connections between columns in tables).
The primary key (the collection of unique attributes) is shown above the line;
remaining are below.

These two show the same relation.

Pictorial schema

Customer
7N e o
(AccNum

Vendor

Transaction

Vno
AccNum
Tdate
Amount

& Copyright 1995 Travor R Grove

arrows point towards relation (table) where the attribute domain is (column
values are) defined"

Relational algebra

* Proposed by E.F. Codd (1972) as basic means of
manipulating data in a relational database
* A set-theoretic procedural query language, with
fundamental operations:
— reference
selection
projection
cross product
set union Algebra: Set of operators

mapping existing relations to
new relations

set difference
renaming

© Copyright 1958 Trevor A. Groye

We've been skirting around the issue that there is a concise mathematical basis for the relational
DB model. Will take an informal look at this.

A relation is a connection between attributes and values, viewed as a table.

Mathematically, a relation is a set (a set of tuples that consist of attribute-value pairs). There is a
well-established mathematical system for doing things to sets, including combining sets and
choosing subsets.

Formally we're talking about an algebraic system, or just an algebra. An algebra consists of
operators (actions, verbs) and operands (objects, entities, nouns). Classic example is "algebra”
("ie "the algebra", no indefinite article) which is an algebra of numbers and arithmetic operators
like addition and multiplication. We're interested in an algebra of relations: relational algebra..

Mathematically, there are all sorts of assumptions, rules and definitions that go along with an
algebraic system. One very important one says that the result of an operation between two
operands is the same things as the operands. Eg adding two integers results in another integer.
this principle is called closure. Our algebra of relations will be closed, so that the result of an
operation between relations is another relation.

Why do we care about all this stuff? Because the relational algebra we define is, for the most
part, the query language that we will use to do things to relational databases. Some of the
operators are ... [refer to list]. As we look at the definition of these operations, we will show
examples using a DML-style query.

SQL & relational algebra

SQL is the standardized “computer language” version
of relational algebra

Commands in SQL = operators in rel. alg.

Examples:

— selecting a subset of rows or columns

— combining two or more tables

“SQL database” is not correct, “relational database with
SQL" is (notwithstanding commercial practice)

& Copyright 1995 Travor R Grove

How does all this stuff fit together?

- DBMSs look after data

- relational databases are DBMSs based upon set-theory (relations)

- relational algegra is mathematical system for working on relations

- SQL is a popular commercially-available computer implemetation of relational algebra

Commercial practice is to refer to an “SQL database”, although that’s not strictly correct. There
have been many expreimental relational databases that don’t use SQL Eg IBM’s QBE; ? Quel

The formal definition of SQL is quite complex. We looked very briefly at stuff last time. There isn'’t
much to it except for the select statement -- the thing that we use for querying. It's as complex as
many entire programming languages. It is quite powerful.

It is definitely requires skill and experience to formulate queries with SQL. Is is necessary to know
all about relational algebra etc to be effective? Maybe not, but certainly helps to have an
understanding of the underlying principles.

Following is a non-trivial example just to give a feeling for the kinds of things that can be done.

Complex SQL “select” example

E.g. “Names of customers with all transactions on vendors
in the same city.”

select C e from Cu
where exists

m

where T1

and T1.Vrno = V1.Vno

and not exists

(select * from Transaction TZ,
Vendor V2

where T2.Acc = C.AccNum

2 Copyright 1995 Trevor A Grove

Eg: "names of customers all of whose transactions are from vendors in the
same city"

first subq picks all the transactions for a given customer, then traverses that
candidate set

second subq picks all the transactions whose city isn't the same as the
candidate in the first subq.

not exists second subq is true only if there are no transactions in a different
city (ie city is the same)

exists first subq says that there is at least one customer candidate's
transactions are all in the same city.

Application development

ISQL and stored procedures

Embedded SQL
The Open Database Connectivity (ODBC) interface

4GLs and data-bound objects

Copyright 1995 Travor R Grove

Saw that SQL seems to be quite powerful, but never good enough for all situations. Ad-hoc querying
is useful, but certainly not appropriate for naive users. Need to be able to create “canned”

applications.

Take a quick look at several different techniques.

ISQL and stored procedures

« ISQL: Interactive SQL
— vendor-specific application for ad hoc queries
— generally supports standard SQL DDL and DML, plus
DBMS management functions
» stored procedures:
— vendor-defined procedural language containing SQL
“‘statements”
— procedures are prepared by the DBMS and stored
(somewhere) in the DBMS
— triggers: allow stored procedures to be executed when
certain conditions arise

& Copyright 1995 Travor R Grove

Every DBMS vendor provides some Kind of ISQL tool to do DBMS
management functions and allow ad hoc querying. Not really an application
development tool, but certainly valuable for prototyping, testing gqueries.
Can be used by advanced users as a reporting tool

Each ISQL tool defines its own dialect of SQL. Core standard is defined,
plus typically lots of extensions. Definitely not portable -- very vendor-
specific.

Stored procedures: some vendors define a programming language that can
be used to write DB programs for queries, updates etc. Utterly vendor-
specific (not all vendors have such a feature); programming language a
mish-mash of current 3rd-generation programming languages (C pascal
basic etc).

Procedures are stored in the DB (secret place), where they can be invoked
by ISQL (or other application-development technologies).

Interesting spin on stored procedures is triggers. Can place instructions into
the DBMS that will cause a procedure to be executed under certain
conditions. Eg if a credit balance exceeds max, take some action.

Embedded SQL

=
embedded SQL preprocessor

E—— [nker |
e

© Copyright 1998 Trevor R Grove

This is the real stuff.

General idea is to merge SQL with a traditional procedural programming language (host language). Slide
references C, although equally possible to use PL/1, Pascal, COBOL, Ada, REXX.

Can view this merge as an extension to SQL or an extension to C. It's really both and neither.

- Design a language extension closely resembling the SQL we have seen. Use this for database operations;
"embed" the SQL into the host language program. Called ESQL

- Code the embedded SQL language along-side existing language constructs. use the host language to
express procedural constructs like loops, decision paths

Take the hybrid program, process by an SQL preprocessor which converts the embedded SQL into ordinary
host language (taking care of many details, probably uses function calls). Then proceed as usual.

- start with C augmented with embedded SQL

» process with SQL preprocessor, produce pure C code. C preprocessor is generally provided with database
product, not C product. It's important that the preprocessor generate C code that is compilable by the desired
C compiler.

The pp generally creates a distinct source-file that contains the C code. Can look at it if we want. Usually it
gets discarded after use.

» C compiler compiles C code. Other C code (.h files for libraries) will be required. Compiler produces object
code.

+ Linker combines all object (our SQL, other application code, run-time libraries etc) to produce an executable
module.

Why do all this?

1) Want application programmers to be able to use common DML regardless of development language.
Same DML as interactive usage, so really convenient to do interactive testing, then immediate translation into
ESQL

2) Typically really gorey code. Lots of obscure functions with lots of parameters; detailed data-structures.
Preprocessor is responsible for subtleties of each app-dev language.

3) Provides independence of changes to interface definitions. the DML isn't likely to change
(in a non-upwards-compatible way), but interfaces to given languges may change.

The Open Database Connectivity
(ODBC) interface

» Defined by Microsoft Corporation as a standard
interface to database management systems

» Defined with a set of function calls, called ODBC
Application Programming Interface (API)

* The API can be rendered in many languages;
variations by vendor, language

® Copyright 1996 Travor 7. Grove

Embedded SQL in traditional programming languages is one methodology for developing DB
applications.

Another methodology is based on a standard called ODBC. It is similar to ESQL in the sense that it is
a modification/enhancement to an existing programming-language. It's implementation philosophy is
quite different, though. Instead of creating a hybrid language with its own syntax etc, the ODBC
standard defined a set of function/subroutine calls that can be rendered directly in a host language.

Like any industry standard, there are variations and levels. Since the APl is packaged as a
programming-language library, it must be developed to conform to a specific language
implementation. As well, there are potential variations in DBMSs. Generally, must ensure
compatibility between language, APl and DBMS. Most implementation do this with a multi-layer
structure that contains separate layers for ,op-sys dependencies and DBMS dependencies

ODBC driver SQAL Anywhere SQL Anywhere
manager ODBC driver DBLE0T. DLL engine
OREERGTM Translation DLL Language DLL c

ODBC.INI Database

Fourth-generation languages

Fourth-generation languages (4GLs): form-generators,
rapid-application-development tools, GUI development,
query generators

Examples: Visual BASIC, Delphi, PowerBuilder, SQL-
Windows, efc

Vendor-specific, non-standard languages and
environments, operating-system dependent

Object-based, “"Data-bound” objects

SQL is often hidden from the application developer

© Copyright 1998 Trevor R Grove

Have seen two development methodologies, both involved C programming. To a greater or
lesser degree, both required knowledge of special function libraries, datatypes etc.

Another, considerably different, methodology involves what have become known as 4GL etc. At
first glance, tools appear to be radically different, but they all have similar goals: improve
productivity of applicaton developers.

Most of these tools have common features, in particular a graphical interface that supports
interactive form-painting integrated with a database browser that lets the developer navigate a
DB schema.

Many of them use an object-based programming model. In particular, they have a high-level
“database object” which hides most of the details of how to do queries. Often referred to as
“data-bound” objects, because they provide a connection between ordinary GUI elements such
as text-displays, and database fields. The key idea behind a data-bound object is that once the
connection is defined, updates, refreshes, commits, are automated.

This approach simplifies life for the app. dev, but invariables hides many details. Not sure if this is
a good thing or a bad thing.

Pros and cons

« ESQL:
-~ ESAQL varies according to DBMS vendor
— staff must know both DBMS ESQL and host language
— “closest” to DBMS — best for performance
« ODBC:
— performance penalty
— DBMS operations expressed in host-language paradigm
— ODBC reasonably standard (but some vendor extensions)
* 4GLs
— short learning curve, good for GUI
— possible performance problems (but not necessarily)
— some SQL operations may not be implemented

% Copyright 1985 Trevor R Grove:

How do these methods compare?

ESQL is not portable - apps written to one vendor will almost certainly need rewrites to move.
However, this does mean that can wring the most out of the DB by using native features. Training is
more expensive, because staff have to know the host language and the ESQL language as defined
by the particular vendor.

ODBC is more portable, although some vendors have implemented extensions to get around
performance problems. ODBC itself defines conformance levels. There is guaranteed to be some
kind of performance penalty over ESQL, since ODBC is implemented as a function layer. Smaller
learning curve, since ODBC is presented in same syntax as host-lang (have to understand basic DB
operation, but noting as detailed as an ESQL definition).

4GL hides significant details about underlying DBMS (buries details in objects). Should be able to
swap DBMSs transparently. Most portable, but potential to prevent some operations (overly
abstracted, least common denominator). Performance penalties not absolutely necessary, but
probably. Learning curve is typically shorter, most tools have built-in wizards and tools to expedite
development. Tools typically oriented towards GUI development.

Data modelling

» Creating the database conceptual schema
+ Entity-Relation modelling

« Normalization

& Copyright 1996 Travor R Grove

We have spent considerable time looking at DBs, manipulating,
implementing using DDL. We have always had the DB design (table
definitions) given.

Now turn attention to designing a DB schema. Given a bunch of data, how
do we decide what tables to have? What attributes?

We will touch on two different methods: the Entity-Relationship modelling
technique, and normalization technique. At first glance, these methods seem
quite different, but not surprisingly, they create similar DB schemas for a
given situation.

E-R modelling

world/enterprise described in terms of;

— entities

— attributes

— relationships

visualization: ER-djagram

well-defined methods for transforming diagrams into
SQL DDL

mature methodology (initially described Chen, 1976)

© Copyright 1698 Trewor R Grove

So what is ER all about? Must understand that is is just a design methodology that we use to create the
conceptual schema for a DB. Represents the overall structure of a DB. So, it qualifies as as DDL, but as
we’'ll see, it is a two-step method that models data graphically first, then produce table definitions, which
we can render in SQL.

The process of constructing an ER model for a DB involves significant understanding of the real-world
enterprise that is being modelled. Sometimes hear the term enterprise model or enterprise scheme.

At the core of ER modelling is the concept of viewing the world as entities -- things, objects, identifiable,
distinguishable. Eg customer, car, bank account, course, classroom, instructor. In all cases, we can
somehow tell entities apart.

The way that we distinguish entities is with their attributes or properties. Eg customer have different
names, cars are different models or colours, bank accounts have numbers, classrooms have locations
and capacities. So not only do we have entities, the entities have attributes. These attributes can be
descriptive, or can describe real-world be limitations on the attributes. Latter case are often called
constraints.

Once we have a collection of entities, we dedefine relationships between the entities, ie how the entities
interact with each other. Eg a customer own a car, a course has an instructor.

ER modelling is a visual design method. It uses formalized diagrams (ER diagrams) to describe entities,
their attributes and their relationships. Once constructed, ER diagram is a visual representation of the
compete enterprise scheme. It can them be translated into a relational schema and implemented in
SQL. It can also be translated into any number of other DDL. Some people have experimented with
query languages that deal directly with ER diagrams.

Note that ER modelling is a mature technology, first described 20 years ago.

Example E-R diagram

_-+ Course [—— P
(1N) | 1 ~<_CourseName >

< CourseNum >~

== _Section_(i)ifr;
(1,1) | |

i j N . ectionNu m

(1.1) ___ Tsection |=—_ (6,50)

~x.r,;_ralrlght3yi — Enrolleq[rjff ——__ Mark >
ON)| N |(35)
| Student %\,

} Proféséor I\\ . -

J & s = o B ;Sit:UdentNarrlgf_:_\i

< ProfNum > ~ < StudentNum >

© Copyright 1986 Trever B Grove 5 4

A big example with lots of stuff.

- orange boxes: entities

- green ovals: attributes/properties of entities

- pink diamonds: relationships between entities
- numbers: constraints on numbers

ER modelling is like programming in the sense that it requires expertise and experience. As a visual
method is has advantages over methods like written descriptions.

Beyond the design phase, ER diagrams are useful for documenting systems.

section:course is n:1 there can be many sections of 1 course

a course can have min 1, max N sections; a given section can be a section of only a single course
section:professor is n:1 there can be many sections taught by one professor

a section is taught by min 1 max 1 professors; a professor can teach from 0 to N sections
section:student is n:n sections have many students, students take many sections

a section has a min of 6 max of 50 enrolled in it; a student enrolls in min 3 max 5 sections

Normalization

DB design by mathematical transformation:
— put all data into a single (huge) table

— create rules about relationships between data (functional
dependencies)

— reduce and factor into separate tables

separation according to normal forms: tables that
obey mathematical constraints

keywords:

— third normal form: 3NF

— Boyce-Codd normal form: BCNF

very theoretical, but yields similar results to ER
modelling

© Copyright 1998 Trevar R Grove

Normalization is an entirely different approach to DB design.

Here, we put all the data in an enterprise into a single table (universal table). This table will have
significant redundancy and other problems.

Along with the tables we write down a set of rules that describes how the data in the table is related
(functional dependencies)

Using mathematical transformations (normalization), split the universal table into lots of smaller ones
that have fewer problems.

These transformations are done according to rules that preserve the relationships. It turns out that
there are standard forms that these decomposed tables follow, called normal forms. 3NF and BCNF
are the two most common normal forms.

Normalization is a highly mathematical methodology that is probably most useful to adademics, less
practical. However, both methods tend to produce tables definitions that are remarkable similar.
Knowledge of each is useful. [eg determining FDs is the similar to defining relationships).

Comparison: ER requires intuition, Normalization is mechanical (once FDs are discovered)

ERh method lends itself to automation. db design tools: ER diagram editors; ER-to-SQL

For normalization, transforming FD to ER can be done. Not much to help creating the FD (intuitive
problem like ER).

Database system architectures

Monolithic systems
Client-server systems
Parallel database servers
Multidatabase systems

& Copyright 1995 Travor R Grove

Monolithic system

Application
DBMS

File System

» Each component presents a well-defined
interface to the component above

& Copyright 1995 Travor R Grove

Component functions

« applications:
— user interaction: input of queries and data, display of
results
— application-specific tasks
- DBMS:
— query processing and optimization: select and execute
one of many possible procedures for doing a query
— buffer management: allocation and control of memory
— transaction management: concurrency control, rollback,
and failure recovery
— security and integrity management: access control and
consistency checking
« file system:
— storage and retrieval of unstructured data on disks

& Copyright 1995 Travor R Grove

Client—server system

S ———

Database Server
File System

& Copyright 1996 Travor R Grove

notice that the DBMS has been split in half, into server and client
application and DBclient go together, DBserver and FS go together

applications are still presented with a single DBMS and are not aware of the
separation between the client and server

middleware: software layers that enable communications. generally part of
the op. sys networking protocols. better called “client-server protocol”

A client-server protocol dictates the manner in which clients request
information and services from a server and also how the server replies to
that request (some examples of client-server protocols are NetBIOS, RPC,
Advanced Program-to-Program Communication (APPC), Named Pipes,
Sockets, Transport Level Interface (TLI) and Sequenced Packet Exchange
(SPX)). [from comp.client-server FAQ]

OSF-DCE can also be considered as middleware

...continued

+ DBMS client: packs application requests into
messages, sends messages to server, waits for and
unpacks the response

DBMS server: all database system functions, including
query processing and optimization, transaction
management, security and integrity management,
buffer management

client-server separation allows user interaction and
database management to be performed by different
processors

& Copyright 1996 Travor R Grove

IE. client does application-related things; server does gory system-related
stuff

this is a two-tier arch.; sometimes in large systems a three-tier system is
necessary (agent: handles resource metering, translations)

This structure lends itself to putting the client stuff and the server stuff on
different computers. but certainly doesn’t have to be that way. Could quite
happily argue that this is a better way to organize software in general. Lends
itself to object-oriented design and implementation.

Database Server

File System File System

& Copyright 1995 rmw%

the applications still talk to a single server (trsansparently, via a client)

however, the server is actually a collection of separate servers, each with its
own underlying system

the organization of the collection is “hidden” in the sense that nothing outside
the collection is aware. In typical implementations, one server would act as
a coordinator for the activitites of the collection (however the coordinator
might change dynamically)

data can be spread out between the ser vers. if this occurs, it is transparent
to the applications

...continued

data is distributed across the sites
relations may be fragmented

relations (or fragments of relations) may be replicated
at several sites

clients perceive a single database with a single,

common schema

Transparency:

« distribution of data is transparent

« distribution of computation is transparent
« replication is transparent

« fragmentation is transparent

& Copyright 1995 Travor R Grove

spreading data out is the primary reason for parallel/distributed systems.

this can involve splitting relations and putting chunks at different places, or
making copies of relations at many sitest

all of this is intended to improve the performance and reliability of the DBMS

complicated, fragmentation replication is problematic

Parallel vs distributed

- parallel database server:
— servers in physical proximity to each other

— fast, high-bandwidth communication between servers,
usually via a LAN

— most queries processed cooperatively by all servers

 distributed database server:
— servers may be widely separated

— server-to-server communication may be slower, possibly
via a WAN

— queries often processed by a single server

& Copyright 1995 Travor R Grove

parallel well-suited to dynamic load balancing
distributed good for isolated sub-tasks

security is less of a concern with an corporate/internal LAN. Using a public
carrier for WAN services may cause security exposures

Parallel—distributed: why?

reliability and availability: if one server fails, another
can take its place

faster query processing: several servers can
cooperate to process a query

data sharing with distributed control: individual sites
can share data while retaining some autonomy

& Copyright 1995 Travor R Grove

Why not? Complicated, lots of places for failure. Networks involved,
security, reliability.

l- Multidatabase system

S Application
'\\ Application

o
\ Multidatabase |«
-

system

(_J

——

Appllcatlon
Application
DBMS DBMS

& Copyright 1996 Travor R Grove

a multidatabase system inserts a software layer that acts as a manager or
broker between applications and a collection of autonomous (non-integrated
databases.

as the picture suggests, it is acceptable for the DBMSs to have their own
clients, as well as the ones brokered by the multidatabase

an example: DBMS A and B are member institutions of credit-card co. they
each have their own application bases, but also support multidb transactions
coming from shared POS system

...continued

multidatabase system (MDBS) create illusion of
integrated single DBMS

applications perceive a single database system

servers are autonomous; may use different schemas

(external, conceptual, internal) or DBMS models

some such operations may be difficult or impossible:
the MDBS must be able to construct a homogeneous
schema and handle distributed—parallel complexities,
too

& Copyright 1995 Travor R Grove

this kind of system can br really complex and has inherent implementation
challenges

Emerging technologies

» Object-oriented databases
* |Integrating autonomous databases

» Futures

& Copyright 1995 Travor R Grove

remote DB clients (eg laptops) are an up-and-coming technology area.

Object-oriented database systems

AccountHolders;

// Methods

void De 1t t amount) ;
at amount) ;

il

» class definition is like a relation schema; attributes are
similar to relation attributes

» unlike relations, classes may have methods (arbitrary
procedures)

& Copyright 1995 Travor R Grove

set<ref<customer>> AccountHolder

means AccountHolder is an Attribute. It is a set of values, each of which is
found in the Customer object (ie a reference)

Inheritance

Account{

* CheckingAccount is a subclass of Account; all methods
that apply to Accounts also apply to CheckingAccounts

& Copyright 1995 Travor R Grove

Set-oriented access

» E.g. “Find the balance of account 9999."

Set< Ref<Account> > A
Select a.Balance
From Accounts a

Where a.ANum = 9999

« a standard object query language, OQL, is emerging
» for queries involving more than one object, OODB
forces navigational access

& Copyright 1995 Travor R Grove

Even though this is object-priented, we really want to process sets of values
in response to a query (just like relational).

set ... creates the object instance (like a variable declaration)

select the balance from an account (correlation name a) where the number
is 9999

Convergence of object-oriented and
relational

objects relations
methods set-oriented
navigational access query language
subtypes/supertypes limited attribute domain

“original” “original”
object-oriented relational
systems systems

set-oriented subtypes/supertypes
query language operations (methods)
(OQL) (SQL-3)

object/relational
systems??

& Copyright 1995 Travor R Grove

Integrating autonomous systems

large organizations (corporations, government
agencies) often have multiple autonomous,
heterogeneous information resources (databases).

what kind of “glue” is needed to allow such systems
to fully exploit these resources?

some possible answers:
— federated database systems, or gateways
— warehouses (data warehouses)
— workflow management systems

& Copyright 1995 Travor R Grove

Federated Systems

Federated
Data base

[Agent | |_Ath_] Agent

ﬁ Database B Database C

& Copyright 1998 Travor R . Grow

Similar to MDBS; collection of independent DBMS.

However, all access is through a single point (the federated DB), giving the
appearance of a single DB, and preventing independent access to the
DBMSs (this is the big difference).

Each DBMS is “fronted” by an agent process that translates/arranges
details, so federated DB can have a uniform interface to each constituent.

Data warehousing
Q

A

“Warehouse”

Database A Database B Database C

= data warehouse is a database that contains data
derived from other databases

& Copyright 1996 Travor R Grove

Data warehouse is a database with an accumulation of data from other
databases. Other DB need not necessarily be relational; could be anything.
Note arrows are uni-directional; reloads must be done periodically.

Generally used in read-only applications like decision-support systems, exec
info systems. subordinate DBs still used for online applications

Just a big DB. the DBMS may need to be optimized for the large size (sum
of all other databases).

Trick is to create db structure in the warehouse that organizes data from
hererogeneous sources and facilitates finding and correlating data. support
“drilling down”

Workflow management

+ consider the procedure for taking a business trip:
obtain travel approval from manager
obtain travel advance from financial
obtain reservations from travel
take the trip
obtain expense reimbursement from financial

» each step may require query and update of one or
more databases.

& Copyright 1995 Travor R Grove

...continued

+ A workflow management system allows such operations
to be defined, stored, maintained, and executed

/ workflow /
A /. description /

Workflow Manager

Step 1/ /
4

Database A Database B Database C

& Copyright 1995 Travor R Grove 76

Step 2

Futures

» Remote databases
— nomadic database applications (laptops)
— cache local modifications, update master later
— refresh other copies
+ Text databases
— storing large amounts of text in a relational DBMS
— overlap with “information retreival”
— implications for WWW publishing

& Copyright 1995 Travor R Grove

Summary

Relational databases based on formal mathematical
systems; mature, stable technology

SQL is predominant query language for r-DBMS

Several application development techniques exist,
including ad hoc query facilities, ESQL and 4GLs

Data modelling is the process of designing a DB
schema; ER modelling & normalization are methods
DBMS architectures: monolithic, client—server,
distributed—parallel, multidatabase

Emerging & future technologies: object-oriented
databases, autonomous DB integration, remote
databases, text databases

& Copyright 1995 Travor R Grove

Navigational access

» object-oriented databases suffer from navigational
access, which relational databases had elminiated!

string AG
Ref<Emplo
Yi

string Name;
string ENum;
7 ete., ete.,

Vs

& Copyright 1995 Travor R Grove

...continued

E.g. “Find the name of the manager at the branch where
account 9999 is located.”

+ finds the name of the manager of the branch for account
9999 by traversing three objects: an account object, a
branch object, and an employee object.

In a relational system, a similar query would be answered
by joining the Accounts, Branch, and Employee relations.

& Copyright 1995 Travor R Grove

