
Opening remarks: Purpose is to give overview of essential constructs in language and libraries.
Crash course.

Will get “reading knowledge” of C: be able to recognize what a pgm does, make modifications
(most applicable!)

Presumed background: programmer, comfortable with general programming techniques. [ask about
experience]

My background:member of CSG, research group, focus on prog. lang design and implementation,
sw eng. I am not a C lawyer - cannot quote chapter and verse on standard [show and tell standards
docs]

Presentation style: workshop, encourage questions and discussion. Some demonstrations.
Present overviews and then refine -- need to omit details sometimes (too overwhelming, but ask if
confused). Development environment available in lab for trying out. All source-code made
available. [lab machines slow - encouraged to copy demos to diskettes and take away, bring C code
in for trial]

Will be looking at pure ANSI C, will be system independent. Will not discuss implementation
techniques for any specific systems (esp. not Windows). Lab uses PC version under Windows
(Watcom C), but we’ll be minimalist.

History of C: Developed in Bell Labs (now ATT) late ‘60s and early ‘70s. Developed in conjunction
with early UNIX systems on PDP-11 and other machines. Linguistic roots in languages BCPL and
B (both Bell Labs research languages; B used in first UNIX implementation on PDP-7). Also
Fortran (predominant scientific language in North America, not COBOL, not ALGOL).

Language style is lean and mean (low-level, provides access to hardware). Language is minimal,
standard libraries provide much of the functionality, instead of building stuff into the language.
Language is designed to make function calling efficient, program structuring easy.

Language intended to be replacement for assembler for systems implementation (cheaper to
develop and easier to maintain). Want to be within 10-15% of efficiency of hand-written assembler.
Early versions of C on PDP-11, Honeywell 6000, s/370; UNIX implemented in C on pdp-11,
interdata 8/32. Early claims of 95% portability (but small samples: 13000 lines of code!)

Initial popularity in academia mid to late ‘70s. Bell labs strange licencing: give away source to
universities, exorbitant fee for commercial ($50K source licence, no support (gas $.65/gal)). ATT
breakup let ATT enter computing, started to licence more freely. As PCs developed through 1980s,
C became feasible. Portability became especially important with new hardware all the time.
Workstation-class machines (eg Sun, HP) chose UNIX and C as standard software. Available just
about everywhere [comment about Mac, s/390]

Current popularity: [ask audience] portability less important, development and maintenance cost key
features. Assembler code way too expensive, esp for RISC machines that are difficult to program
(100s of instructions for simple operations).

A first program, gives a broad introduction. Displays or prints a line of text somewhere. “Print” from
old days of teletype terminals. Today, displays line of text on screen. Every implementation has a
standard (default) place. Details later. Several important points:

1) main() -- starting point (entry point). provides connection to environment (sysdep). actually a
function definition: braces.

2) printf() -- another function, reference in this case (invoking the function, not defining it). defined
“elsewhere”. This is an example of a statement in C: in this case, statement invokes a function.
Terminology of function, procedure, routine, etc.

3) argument or parameter to function [ask about concept]. defines the string that we want printed.
Quoted string, literal string, characters appear exactly as shown (white lie for #6)

4) “Elsewhere”: call “include directive” one example of features of “pre-processor” or “macro”
language (used to modify source code prior to compilation; macro idea -- gather stuff together and
label, then use label). Include: copy stuff from named file and pretend that we typed it ourselves.
Contains lots of definitions and ofher useful stuff. Name of file enclosed with angles <> (format of
name is system dependent). <> means this is a standard entity (defines where to look for file). can
also use ““ to mean a private file (different search rules).

5) comments: can be multi-line; do not nest

6) an escape character. “\” means next character has special meaning (“newline” in this case).
Converted at “compile-time” (during compilation): compiler recognises \ and makes substitution.
Others include \t for tab character, \f formfeed and \0 for null character (character code 0). Note that
how printf deals with whese escaped characters is a property of the function, not the language.
Typically system-dependent -- newline representations differ (eg unix, dos), or none at all
(mainframes with EBCDIC). (concept of NL char from UNIX file-system model).

7) semicolon is statement terminator (not separator like Pascal eg.). Most of the time, OK to put in
semicolons wherever you want (some exceptions to be seen).

8) presentation is free-form, spacing and line irrelevant (except in literal string). \ is continuation
character.

1
2

3

4 5

6
7

Another program, some more details.

1) variable declaration: reserves space. “float” is type, say how much space, gives meaning/
interpretation of that space. Float is binary floating-point, other details are system-dependent.
Typical PC: 2 bytes IEEE standard +-e38, 6 digits. s/390 4 byte e+-75, 8 digits

name of variable: case sensitive, usual rules (some details to be discussed later)

2) assignment operator

3) numeric constant -- floating-point

4) arithmetic operator -- multiplication

5) control string in printf: not displayed literally. % means substitution item, sub values given as
subsequent parameters to printf.

6) for eg. %f means get next floating-point value, substitute and format it (somehow, more details
later) and display. substitution occurs at run-time, not compile time. can say control string is
interpreted. equivalent to fortran format strings. programmer’s responsibility to get things right
(match up directives with values), provide correct number. A directive without a value not detected;
generally produces garbage.

7) be clear distinction between %f (function action at run-time) and \n (compile-time replacement).
when program is running %’s take time, \’s don’t.

8) points out that valiable number of parameters is acceptable.

12

3
4

5,6

Some more:

1) integer variables: big variation in implementations, PC 16-bit vs 32-bit (opsys dependence);
integer constants

2) looping construct. repeat block of statements some number of times. This one is called a “while”
statement (more of these later). repetition controlled by ...

3) conditional expression (yields true or false). loop repeats as long as true. contains a ...

4) relational operator. compares operands and is true or false.

5) compound statement. treats sequence of statements as a single unit. this is a requirement of the
“while”: it repeats a single statement, so use compound to join together. repeated statement is
referred to as the “object” statement

1

2

3,4

5

output from previous program. note fairly ugly appearance. will fix this soon.

slight refinement:

1) for statement instead of while. same ideas, looping construct, repeat some statement (compound
in this case) some number of times. three parts:

initialization: what to do before first time through object statement. only done once ever.

termination condition: keep doing the object statement as long as this condition is true.

loop incrementor: do this statement after the object statement (every time through)

This pgm is equivalent to previous, more succinct -- less typing (C programmers don’t like to type)

Succintness is guiding principle in C, will see many examples of this (as in next)

1

more short-cuts and succinct expressions:

1) automatic incement operator, “auto-increment” (post-increment in this case). Add 1 to the
variable. exactly same as x=x+1. PDP-11 instruction set concept.

2) special assignment “plus gets” or “plus equal”: add value of the expresison on right to the
variable on the left. same as x = x + expression

3) improve appearance of output, %f8.2 says field-width of 8, 2 decimals. lots of details to be
discussed later.

1

2

3

nicer appearance. note rounding etc.

another improvement

1) printf of string literal to produce title. spacing done hard way (counting). use double newlines to
produce blank line

1

looks nice...

simple input

1) scanf: used to read stuff from somewhere. system-dependent: typically via keyboard. like
printf, implementations define standard place. Scanf is “high-level”: reads characters and converts
to floating-pt number. skips white-space, newlines etc.

works as opposite to printf. control strings dictate what is expected in input stream, parameters
indicate where to place results.

Error-handling is bad. if item not found, get 0, no way to determine what’s there. hence scanf is of
limited applicability for “industrial-strength” software.

2) note the & preceding the name of the variable. it says that instead of value of variable (like
printf), we want to modify the variable; we want a reference to the var. Will discuss this in more
detail later.

Note: no \n in first printf. system-dependent behaviour, but typically a prompt to allow input to be
typed beside output.

1
2

nice output

Some new stuff:

1) scanf directive %d for integer (decimal for base-10, not hex or octal or binary. definitely not s/370
packed decimal). remember: & means reference (will modify variable, not use value).

1

continued:

2) if statement: choose between two statements depending on value of conditional expression.
(relop). if true, do first, otherwise do second.

Else is optional, if false and no else, nothing happens

Object statements are single statements: use braces brackets to form compound statements. Not
strictly necessary here, but cann stress strongly enough to use them when in doubt (will see kinds
of problems later)

2

output of program

another program. reads an integer to determine how to proceed, then converts

1) == is the relation operator for equality. note that using = by mistake is really bad.

2) an arithmetic expression. follows all the typical rules of algebra for priorities. use parens for
clarity and to change order or operation.

3) braces are mandatory here, since object actions are more than a single statement.

1

2

output of previous

another example:

1) another header file. contains definitions related to mathematical functions.

2) use sqrt function. example of a function that returns a value.

3) for statement: controlled with fp numbers, not integer (demonstrates equivalence to while loop).
detail: use x += 1.0 instead of x++, explanation later.

1

2
3

output for flav-4

same ugly output

C has lots of operators -- originally, an attempt to model instructions
sets of hardware (esp PDP-11)

Lots of them (powerful, terse, overwhelming at times)

Before discussing operators, need to have a quite look at arithmetic
types and declarations (specify ranges of values and storage):

Basically, most things are integers (ints), considered to be equivalent to
mahine word. Historically, a word was the smallest addressible unit of
storage (PDP-11, might even be true for x86, who knows?).

Character (char) is also considered to be an “arithmetic” type; its just a
very small integer (can only how values from 0 to 255 or -128 to +127).
Generally assume that a char is the smallest unit of data (corresponds
to a byte of storage).

declarations: what the type is and what the name of the variable is.

aside: rules for identifiers as usual, remember case sensitive.

integers: lots of different modifiers that can be applied

size: how much storage, system-dependent unspecified means
system default (for PC, 16 or 32 bits depending on OS), long and short
a relative to system default.

sign: should the number be considerd signed or unsigned. may or
may not be of concern (affects things like relative comparisons,
overflow conditions)

lots of ints

floats are all system-dependent: PC uses IEEE 2, 4, 8 bytes, etc

declarations: pick the apprropriate type to model the data being
represented.

can force constants to acquire specific types (controls amount of
storage).

note single character constant (not a string)

dealing with constants:

constants are a fact of life, good programming practice to use symbolic
constants

eg compare against 100 as literal const. better engineering to use
constant.

1) use #define: another one of the preprocessor directives:

two parts, item and replacement. compiler will replace item with
replacement wherever it occurs (very simple macro). substitution occurs
at compile-time (referred to as a lexical replacement)

replacement can be arbitrary; can take time to compile

type of constant can change depending on context (eg in this example
would be unsigned, since conpared to unsigned; if changes to signed
variable, constant would be considered signed).

2) different kind of constant, use a “storage class” in a variable
declaration.

says that value of variable does not change (and provides its initial
value)

type cannot change, but compiler could optimize storage (eg assember
literals instead of actual storage).

arith ops - do arithmentc

mod == remainder (integer only)

traditional priority of ops.

assignment is a binary operator, its “value” is the lhs.

In C, speak of “assignment expression”, not “assignment statement”

the act of assigning is almost like a side-effect, so in a simple
assignment statement the value is discarded and we use the side
effect.

so, statements like a=b=c work. (equiv to a = (b=c))

but note:

if (a = b)

is probably not what you want.

relational ops - compare operands, yield true/false

highlight ! for not

used in control statements like if, while

remember == for equality test

result of a relational op is an integer value that is 0 for false and not 0
for true (typically 1 or -1)

this is why

if(a=b)

is so much trouble

logical vs bitwise: logical combines true/false; bitwise works on bit
representations (often equivalent)

yield integers with same meanings as relational

true && true is true, else false

false !! false is false, else true

for &|^~ bitwise: do operations between respective bits in values

eg & does a bit-by-bit and of each bit in value

XOR == (a & ~b) | (b & ~a)

for << and >>: left operand is value, right operand is # of bits to shift

these examples bit-twiddling

define a hex constant that has exactly one bit on: mask for the bit

shifting eg:

w = w >> 2 ; right-shift w by 2 bit, fill depends on sign (unsigned fills
0, signed fills according to top bit)

unary operators that act on single operand

operation is to add or subtract one from operand

pre/post refers to when operation takes place wrt use of operaond

only for integers, not for floating-point

combination of arithmetic and assignment operations: do operation
between two operands, then assign result to left op

shifting eg:

w >>= 2;

trinary operator:

evaluate expr1;

if true, then do expr2

else do expr3

a little wierd, but useful once you get the hang of them

like a “choose” operator sort of

another

pct = (b==0) ? 0 : (a/b)*100;

result is 2nd expr (right)

left is evaluated, then discarded

associates left-to-right: (a,b,c) == ((a,b),c)

useful where need more than one expression, but only one is allowed

eg for stmt initialization, increment

sort of a sequence operator

===================================

aside about statements, expressions: statements are things like if,
while, var declarations; everything else is an expresison

Function invocation is an expression, assignment is an expression,
often use expressions as statements for side-effect value eg auto
inc/dec. conditional expression is an if-stmt in expressions clothing

expressions have lots of rules

- precedence: which to do first

- associativity: how to treat sequence of operators that have no
parentheses.

this stuff is for reference, don’t intend to go into details

more rules

operators can operate between values of differing types.

rules about how to do this.

basic rule: preserve values (avoid data-loss), eg short+short converts
each to an int first, then adds (prevents loss of overflow)

anything smaller than int is converted to int, combinations between int
and “bigger” types as shown next

always convert lesser type to bigger type first, the do operation. doesn’t
guarantee value-preserving, but tries.

type definitions are sys-dep, standard specifies only the minimums

as shown

char signed or unsigned -- sysdep. std says “characters in standard
printing char set” will never be negative, but what is “std char set”?

example programs

1) syntactic shorthand

1

2) expression side-effect statement: discard result of expression, just
interested in side-effect of operator.

in this case

month++;

same as

++month;

sample output

symbolic constants

strings are versatile

not just visible character strings like literals, but foundation for lowlevel
access of memory

C has no built-in, native string type like other langs -- therefore no
operators, no varying-length. everything done with function-calls

strictly, strings are a composite array type (array of characters),
however for introduction, we can consider as a monolithic type.

look at constants first, then variables.

Like the very first program, displays a string literal.

But how is the string represented in memory?

string takes 8 characters/bytes of storage: 6 visible, one for newline and
one funny thing at end:

1) used to represent newline char that is escaped at compile-time.
actually might be more, but we’ll treat as one.

2) null character (character with character-set code of 0). nullchar is
used to mark the end of the string (will elaborate on this later).

Note length is not stored anywhere. length is implicit -- end marked by
null, have to count every char from beginning to nullchar. have to do
this every time -- computing length is non-trivial operation

1

2

Same program, printf string is defined as a constant.

Note that the \n is in the string -- *it’s just a character*

Slightly different -- the constant has no \n.

Instead, use a printf control-string with a string directive %s

like other % directives, subsitiutes values from parameter list; for
strings, copy character-for-character

separates message content from control information

some more string literal manipulation

Output of proceeding, storage representation

(flip forward and back, two-slide sequence)

Now, more stuff: string variables and operations.

1) standard header file <string.h>

- defines standard functions for string manipulation

- as noted, use libraries rather than built-in (this eg is simple string
concatentation) [C designed to be efficient at calling]

- null char is significant -- string functions generally treat null as end-
of-string

1

2) declaration of a string variable: informally, name is a 50-character
string

- can hold string from 0 to 50 characters

3) strcpy “string copy” -- make a copy of a string (destination, must be a
variable; source, can be a variable or a constant or literal)

- method: character-by-character copy until null char is encountered.
null char is copied.

4) strcat “string concatenate” -- append the source string (2nd
parameter) to the destination (first parameter)

- method: find end of destination by finding nullchar, then char-by-char
copy. nullchar end end of first is removed (overwritten), then new
nullchar is placed at end of concatenation.

2
3

4

build up string in pieces

note initial state is completely undefined, no null char.

can’t use string functions on this, since it hasn’t been properly
initialized.

Using scanf to read string values

1) same idea as numbers; %s directive for strings

2) no & here:

- easy explanation: its a rule (strings have no &)

- hard explanation: & creates a reference, array names are already a
reference [the expression value of an integer variable name is the
contents of the variable, the expression value of an array variable name
is the address of the array]

reading strings skips whitespace (blanks, tabs, newlines) => no blank-
embedded strings

1

2

sample input

C (library really) supports concept of relational comparisons between
strings (strings can be equal or not; relation can be ordered: one string
can be less than another)

Ordering based on binary values of character-set -- ordering is system-
dependent. these days, code pages, internationalization, dbcs make
character-string ordering more complicated than it used to be.

Program here reads two string with scanf and then compares them

In keeping with C philosophy, not part of language, no operators.

1) library function “strcmp”:

returns 0 if equal

returns negative if lhs < rhs

returns positive if lhs > rhs

note that this is not a “string equal” function, does not return true/false

for relations, shorter is lesser (null char is less than anything else)

strncmp: restrict number of characters in strings

strcoll: compare according to locale collating sequence

1

samples, look at storage following

1. equal

2. not equal (this > that, returns +ve, i > a)

3. not equal (the < these, returns -ve, nullchar < s)

strcmp family compares character-by-character, whitespace is
significant (eg leading, trailing blanks)

An example of character-by-character manipulation: determine if two
strings are equal (subset of what strcmp does).

A bit of a look-ahead to array processing, since strings are really arrays
of characters, but

1) array subscripting operation: selects i-th element from string.

note i starts at 0

2) loop structure: as long at same characters and not end-of-string,
advance to next character (increment i)

3) null character constant: apostrophes (single-quotes) instead of
doubles

at the end of this loop, strings are not equal; or end-of-string 1

if end-of-string 2, then we quit because not equal (unless also eos1)

1

2

3

we’ve stopped advancing through the loop, either

- end of string1

- two strings not equal

check to see which.

if eos1, then if equal then also eos2 and strings are equal

if str2 is shorter, would have quit because not equal

long constants hard to enter in some text-editors (less of a concern
these days in windowed systems)

compile-time concatentation of constants -- adjacent string literals

1) strlen -- part of standard string library, returns number of characters
from beginning up to but not including null char, number of “visible”
characters (misnomer?)

1

output

can specify initial values for strings at compile time

called an initializer:

1) first example, string length unspecified, compiler will compute. most
applicable to constant

2) second example specifies length and causes that much storage to be
reserved. initial value must fit within that space (but need not be that
long)

1

2

More about printf and scanf;

Quick look at textfile I/O (reading and writing files that contain text,
suitable for use with a text editor like notepad)

The classic c program, prints/displays string somewhere.

Where? C adopts from UNIX and elsewhere notion of standard files: in
C’s case there are three:
stdout, where output goes (eg printf),
stdin, where input comes from (eg scanf),
stdterr, where error-messages go

These entities are defined in <stdio.h> and automatically initialized.

Meaning and behaviour is spstem-dependent. On line-mode systems
like old-style UNIX & DOS, stdout = screen, stdin = keyboard, stderr =
screen.

In current windowing systems, unclear clear. Concept not really
supported in these environments. Lab software, watcom c, creates a
window that behaves like line-mode screen.

Review:

printf, control string, formatting directives, values contained in
subsequent parameters, programmer’s responsibility to get these
correct.

using %d for integers here. note left aligned

there are lots of directives, this is most (missing %p for pointer, %n for
target output length (written to parameter))

d,i: decimal integers [i for compatibility with scanf]

o: converts to octal

x,X: converts to hex, case controls output case

.

.

.

e,E: exponential (scientific: d.ddd eii), case controls output case

f: real (fixed-point)

g,G: decides for itself between e and f

%: prints a %

Again: control string defines types of parameters and how to process,
therefore what to pass; user’s responsibility

1) minimum field width, will be enlarged if necessary. note right
alignment of output

- minus sign inserted if necessary

1

1) same, leading zeroes

1

1) negative field-width: get rid of zeroes, left-align in fixed-width
columns

1

floating-point example, nothing new here

1) exponential/scientic format: mantissa and exponent; precise format is
system-dependent and usually coordinated with system datatypes.

2) upper and lower case “e’

1

2

string has 11 visible characters, not use of singles to show fields

1) print whole string

2) field length is a minimum, so no-op in this case

3) left-aligned, still a no-op

4) pads with blanks on the left (right-aligned by default)

5) left-aligned with minus, pads on right with blanks

6) format: width.maximum, used to truncate part of string that is
displayed; right-aligned by default

7) same as above, left aligned

8) no width, but truncation: common use to display first “n” characters

sample program that incorporates many of the ideas. employs a
standard technique to guarantee columns with proper spacing.

1) note use of equal field width in both places to ensure columns, in
particular, substituting constants in field widths.

1

printing character strings on character at a time: more array preview

1) loop starts at first character and proceeds until nullchar encountered.

2) uses %c formatting directive to display single character

3) note use of post auto increment

1

2

3

scanf directives, much the same idea as printf ones.

1) %d for decimal (base 10) integers; %i for integral values of any base
(in which case, must follow rules for numbers)

2) no distinction in case (both allowed for completeness)

1
2

Standard files are OK, move on now to look at permanent-file (disk-file)
processing. Will be looking at text-files eg the student file. lines of text
arranged into columns or fields. Processing will be sequential (start at
beginning of file, move forward until end-of-file).

other file-access methods possible, use a different library (eg binary,
random-access)

Read student-file and copy verbatim onto standard output (display file)

1) magic variable declaration (pointer)

2) stdio function fopen: open the named file (name is sysdep) for read
“r”. returns constant NULL (defined in stdio) if failure, some magical
value otherwise (don’t care what)

3) get a character from the file and put into variable c.if there is no
character available, put character constant EOF (defined in stdio) into
var c.

- note that c is declared as a int. allows arbitrary character codes. In
particular, allows EOF to be de fined as a value that is not any character

4) putchar: put a character on stdout

5) close the file

Note we pay no at tention for line structure, no \n processing, just copy
char-for-char. if \n encountered, treated and normal char and written.
equivalent to printf(\n”);

This is a UNIX-ism, view file as sequence of characters with no
particular structure, newline may have an interpretation on some
devices, others not.

1
2

3
4

5

same function, some variations:

1) infinite loop: 1 is non-zero whbich is true

2) get out of loop: break. exist from closest-enclosing loop construct.
note style of typing

3) put a character on specified file. in this case, file is “stdout”, so this is
equivalent to putchar(c)

4) stdout is declared in stdio.h, declared as FILE *stdout

1
2

3

4

now, write to a different place than stdout: make a copy of the disk file

1) need two file variables: input file and output file

2) open input file and make sure it opened OK

1

2

3) open output file: name is “temp.fil”, mode is “w” for write

4) as opening for read, make sure file opens OK

5) loop has same structure: copy characters, ignore line structure

6) reference our fpout instead of stdout

also: make sure not to close a file that didn’t open, so have to pay
attention to nesting etc.

3
4

5

6

sometimes want to maintain record structure. program to read file one
line at a time and dispay on stdout

1) declare a string variable to be used as a line/record buffer. use a
symbolic constant for the length, since we’ll need this later

1

2) fgets: gets a string up to and including \n (if any) from a file.
destination is “line”, source is fp. read no more that MAXLINE
characters (use of symbolic constant in both places guarantees no
buffer overrun)

3) put a string on given file (stdout here). note that string already
contains a \n, so no additional stuff

4) loop termination: fgets returns null if eof or error, so keep going as
long as fgets doesn’t return null

2

3

4

can use scanf to get at individual fields

construct control string to match record layout

1) declare bunch of variables to receive fields

1

2) infinite loop with for statement instead of while

3) fscanf instead of scanf: first parameter is file variable, rest are the
same. note mixture of & and not &

- note also that data file is carefully constructed to ensure that each field
is blank-delimited.

4) unlike getchar, gets, have no indication from scanf about EOF. have
to test explicitly: feof returns true if no more characters in the file.

5) alternate style for if -- break

2
3

4,5

Remember that control strings are interpreted at run-time. They can be
created and modified at run-time.

Example creates a control string from input provided by the user, then
displays a number according to that control string.

1) string variable that will contain the control string, 25 is arbitrary.

1

2) sprintf: like printf, except that target is not a file, target is a string
variable

3) want to produce a control string with a %, so need %% [go over
control string char by char]

4) note \n in created control string; note how displayed

5) use \” to display a “

2

3 4

5

printf/scanf to standard files, arbitrary files, string variables.

Control structures, control execution sequence of statements in
program.

semi-colons after statements, never after braces

if statement -- choose between two alternative actions called object
statements

object statements: then part and else part

objects are single statements, use braces to form compound statement

increase complexity, decisions within decisions represented by nested if
statements

if-else associations cannot “cross” braces -- if-else must associate
within same compound statement. (nesting level)

Eg: get rid of first else; 2nd else doesn’t associate with 2nd if because
wrong level

Illustration following

Braces are necessary to resolve ambiguitues.

classic problem in this style of language called “dangling else”

this illsustrates situation just mentioned -- which if does else go with?

use of braces makes it clear: don’t cross boundaries

1) correct structure (no braces) for nesting: else goes with closest if

2) misleading indentation: still no braces present, so association is
same as before

3) must have braces to associate else with outer if

1 2

3

Choose one action from a set of actions

- C has no explicit “elseif”, so use cascading if-else-if; presentation is very
stylized, but functionally equivalent.

True form:
if(blah)

{

asdfasdf

}

else

{

if(blah)

{

asdfasdf

}

else

{

if(blah)

{

asdfasdf

}

}

}

eliminate brace preceding if:

if(blah)

{

asdfasdf

}

else

if(blah)

{

asdfasdf

}

else

if(blah)

{

asdfasdf

}

rearrange indendation
and spacing

if(blah)

{

asdfasdf

}

else if(blah)

{

asdfasdf

}

else if(blah)

{

asdfasdf

}

- always uses braces to avoid problems

if-else-if is very common, explicit statement for handling situation

called “switch”, analogous to “case” statement in other languages

an example of a switch statement

mechanics: evaluate expression, find matching case label.

execute statements sequentially, if break found, goto end of switch

if none found goto default (aka otherwise)

more formally:

1) expression evaluates to one of the case labels

2) case labels must evaluate to constants complie-time. only one
permitted (but note fall-though technique)

3) switch object statement is a statement block (sequence), control
transfers to indicated label (like a goto); execution proceeds from that
point forward. braces not required within cases, since not object
statements

4) if no match, go to default case. if no default, do nothing

5) break transfers control to end of switch object. if no break, “fall
through” to next case. Comes from “computed goto” and “label in
statement sequence” idea. Allows multiple labels per action

1 2

3

4

5

summary, as noted

difference between switch and if-else-if, mostly style and taste. switch
can sometimes express “choose one of” idea (dense cases)

some practical differences:

1) expression evaluated once

- some compilers may be able to generate branch table or other special
optimization.

- duplicate cases easy to identify

- but: missing break can be pesky

1

3) expression evaluate lots (every time up until match) -- could be
expensive, if optimizer cannot hoist common code.

- necessary if non-constant tests

- good for sparse cases

- not so good if same action in multiple places: requires “or”
expressions that can become messy

3

looping construct to repeat statement

expression evaluates to false (zero) or true (non-zero)

statement can be a compound statement

if expression initially false, never executes statement

variation of while: do-while

upside-down while, iteration test at end of loop

loop object always executes at least once

not much difference between the two, useful if computation of
expression depends on execution of statement

ordinary for statement as already seen -- nothing new

three parts: initialization, loop control, incrementor

three steps: initialize, test termination, do statement and increment

not dependent on integral steps, no associated variables (eg read a
file)

might never execute statement or expr3

not much difference

for stmt guarantees that incrementor will be done after the stmt; syntax
make incrementor very explicit

while relies on user to implement incremenotr and put in proper place
(nb continue statement)

use break to get out of loops & switch

not if statement

one level at a time

continue: somewhat of a novelty?

“go around again” for all looping structures (closest enclosing, no way to
be explicit)

in for stmts, proceeds directly to for incrementor expression, then test

in while stmts, goes directly to top and tests: if incrementor not placed
carefully, problem

ok for use with for, generally dangerous for others

in C, programs are collections of functions:

some functions we write, some are provided

some functions return values, some do not. even if they do, we can
ignore/discard value

typical program: reads a value, performs a computation

currently all contained within a function called main.

note ugly format -- saves space

now, isolate the reading operation: put into own function

1) imagine that we have a function “ReadMark” that will prompt for and
read number, then return number. this is how we would invoke it

1

2) definition of function. note similar structure to that of main

- located in same source-file, two fns in same compilation unit
(compiled together)

3) return type is integer. note similarity of function declaration to integer
declaration.

4) incoming parameters. none in this case, so kwd “void”

5) variable definition. can be accessed only within this function.

6) return statement: executable, gives value to be returned. missing
return might generate a warning, not an error

2

3

4

5
6

generic view:

- int is the default type of a function, main returns an int.

- our definition of main should specify void --- acceptable for historical
reasons

- vars are local: cannot refer to mark in readmark, cannot refer to
markval in main

- no history between invocations, created and destroyed each
invocation

- every program has a main, defined as starting point.

- to emphasise that return is executable

- dubious engineering? useful for error-handling

general for for parameterless functions

- function type can be any type: int char, unsigned long, double etc.

- compilers will not enforce type-match, may issue warnings in some
cases (eg constants)

- can use void keyword for return-type to indicate no type returned,
often called a “procedure” (following Pascal nomenclature)

different kind of funtion: procedure (function that returns nothing)

procedures useful for side-effects (since they don’t return a value).

in this case, procedure to grade a mark: mark will be passed as a
parameter

1) invocation of procedure: like function invocation with discarded
result: same as printf etc.

2) pass parameter

3) corrected version of definition of main: void parameter list

1

2

3

1) procedure definition: return-type is void

2) parameter is one integer: “int markval” syntax like variable definition:
in fact, behaves just like a variable that is initialized with value of
parameter that was passed at point of invocation

parameter definition can be like any variable declaration, long, short
unsigned, even const.

No return statement -- nothing to return -- returns at end-of-procedure

1

2

general form

return: since no value to return, not needed if procedure exit is at end
of definition (single exit)

however, can use multiple returns (like functions) for control-flow
purposes (eg error returns)

general form: function type (possibly void), function name and
parameter list (void indicates none)

multiple parameters in a list, separated by commas

parameter linkage: scalars (all manner of integers; floats) passed by
value, parameter behaves like an initialized local varibale

non-scalars (eg arrays) passed by reference (address of variable is
passed): function can change value -- more on this later

two kinds of function:

- returns a value

- has a side-effect

either type accepts args, C library fns almost always return a value

all previous examples, variable all local; no sharing of data between
functions, except for parameters and return values

want to have variables accessible everywhere, in any function

called global variables

1) global variable “mark”, syntax same, defined outside any function

said to have “program scope” (accessible anywhere in program); what
we’ve had up to now is “function scope” (accessible inside a function)

1

definition of grademark: no parameters, no return value; access global
variable

nothing but a big side-effect

Up to now, all source contained in a single file.

In real world, programs composed of many files, often called modules.
take a look at some of these issues.

Big part of the issue of compilation-unit management is controlling the
visibility of things, saying what can be seen where. Have to understand
difference between definition and declaration (reference)

Notes show a filename comment at top of source-files.

Program which processes marks, three modules: main, info (reads) and
report (write) [flip forward & back]

Big part of the issue of compulation-unit management is controlling the
visibility of things, saying what can be seen where. Have to understand
difference between definition and declaration.

Definition say what the thing is, what its scope is, and defines content
(reserves space or lists statements).

Declaration says what it is and what its scope is, omits content. So:

1) definition of program-scope (global) vars. storage is reserved here.
visible everywhere.

2) function declarations: extern means “globally visible”, but not
statements given here, implies must be elsewhere

1

2

definition of main (same source file as previous slide)

very stylized organization: initialize stuff, do stuff, finish stuff (object
oriented, modular)

uses lots of functions: roughly speaking, everything must be declared
or defined before referenced. (if not, int is assumed to be type -- if
subsequent declaration or definition is different, problem.)

Note btw, no standard header files in this module.

Formally, declarations are called “function prototypes”

Terminology and syntax clash: “extern” makes us think of external
definition (defined in another module), but that’s not correct. Extern
means globally visible, it’s defined if the definition is given.

- duplication definitions not caught until after compilation

Forward declaration idea: things must be defined before used. may
have ordered source-code such that need to have a forward declaration
before definition. Perfectly acceptable, even advocated.

put all delcarations into h file and include everywhere. provides some
degree of inter-module typechecking: one of the files will be the
definition -- if that definition and the declaration don’t agree, error

next module (sourcefile)

1) declarations of variables: extern means global scope and defined
elsewhere (slightly different meaning)

note array declaration omits size: note really needed, since storage
elsewhere. just need to know its an array.

2) definition of a function that has program scope (global). extern says
global, presence of statement block means that this is the definition.

Use of extern is different for variables and functions. For vars, extern
means defined elsewhere, used only in declarations, not definitions.

For functions, extern means global scope. can be used in definitions
and declarations (actually, its the default).

3) definition of a variable that has file scope: visible within any of the
functions in the module, but not outside this module. maintains value
between invocations

1

2

3

remaining function definitions.

(note use of file scope variable and program scope variables.

personal coding convention: use of capitalized names etc to help
distinguish scope)

1) %* directives: scan the thing, then throw it away.

1

last module; provides definition of Report/write functions.

another set of declarations for the global variables. Rule is, one
definition and many declarations.

1) empty function

1

The output to our program.

Remaining programs here are refinements of the last module.
Program was organized in such a way that the output operations
isolated into one module.

Refinement: compute class average. Need more variables to add up
marks and count number in class.

1) definition of new variables. Definitions can occur along-side
declarations, no issue. Static vars, visible only within this module.

2) these vars are initialized. initialization occurs only once in the life of
the execution of a program, at load-time (as program prepared for
execution). Could also be initialized in InitReport.

- example of data hiding, encapsulation. implementation of output
module is independent of other modules, so restricted visibility is
appropriate. change the average-computation variables so that they
also are static.

1,2

references to variables.

modular development: enhance functionality, replace empty function.

main program stays the same

(program computes average of averages. in WritReport, which is
called once per student, aggregate student’s average and count. in
finireport, compute average of aggregate

lovely new output

Final revision: change original program to output letter grades instead
of numbers. Need a function that converts value in global variable “avg”
to a letter (represented by a character)

[flip forward slide]

1) usage: invoke grade in parm list, returns char, printf %c directive.

Problem. using Grade() before defined. C assumes integer, creates a
“shadow” or “tentative” definition with integer return-type. When real
definition occurs, error: turned out to be not an int.

2) So, need a forward declaration or function prototype to “define before
use” . equivalent syntax to extern, but use static.

Can also prototype global functions. identical to external declaration --
since that’s all it is, really. Would be required for mutual recursion, intra-
module calling of global function.

1

2

So, function will return char, no parameters. Only used within this
module.

Can use “static” in the definition of the function, same meaning as
variables. only visible within this module

[go back and look at usage]

lovely new output

function protoytping especially useful with .h files

scoping applies equally to functions and variables

Arrays:

groups or collections of variables of the same type (homogeneous set),
individual variables called elements. Elements are numbered: 0, 1, etc.

aka: vector, matrices, tensors

Have to be able to manipulate elements and entire arrays. Operation called
subscripting which selects elements from entire arrays. Subscripting
involves integer value that says which element selected

arrays are direct-access structures: can select elements in any order, no
restrictions on access

In C, fixed # elements; not all elements have to be used (eg strings).

Numbering system for elements starts at 0, no choice.

No checking on bounds! run of the end without notification

1) Array definition: 5 elements numbered 0 through 4 inclusive

2) subscripting operation: select ith element from 0. In this eg, individual
elements are a[0], ..a[4]

3) array elements can be used like ordinary variables. subscripting chooses
an element that is equivalent to a simple value.

manipulate the array (access all the elements), use a for statement, use int i
to select elements.

1

2
3

print the array backwards

program output

array in memory: no null chars, no indication of # elements

Key things in array definitions:

- basetype (type of individual elements)

- # elements

multiple dimensions: add more []. abstraction is array of array, row-major
ordering.

string definitions: remember to add 1 to size to hold nullchar.

Eg: want 10 “visible” characters, need 11 characters of storage:

str[11] == str[0] .. str[9] are 10 visible characters

str[10] for the nullchar

1) table[SIZE] is past the end of the array

1

1) array elements just like simple scalar variables, so need & as before in
order to address elements.

1

continued

Individual elements are OK, want to be able to deal with whole collection,
too.

Eg want to write a function that sets all elements to zero.

1) definition of array, 10 elements numberd 0..9

2) invoke function, pass array and number of elements. have to do this
because there is no implicit record of # elements.

3) definition of function. note empty [] in parameter list to indicate incoming
array.

Array passing sends only a reference/pointer to the array. the expression
“value” of an entire array is its address/reference.
Any changes to “x” in function are really changes to numbers in main.
Think of scanf of strings -- no &, redundant.

Note structure of zero. clever pre-decrements to yield elements 9..0

1

2

3

since strings are arrays, can pass them, too. same rule applies

note use of size parameter, says how big the array is. we put the nullchar in
the last position, which has index size-1. target will contain size-1 visible
characters, indexed 0..size-2.

as seen, string literals (enclosed in double-quotes) are literals that are
contructed the same way as string variables. string literals are “array
constants” too bad can’t generalize to arrays of other types.

can certainly pass string literals to functions, but what if the function tries to
modify the incoming parameter (its a reference, after all)

unfortunately, not detected. compiler changes first string literal, but, because
itentical string literals are merged, all other uses of identical literal are also
modified. (fortran has same problem “1=2”).

can declare parameters as const. If you want to write a function that can
accept literals, declare as constant. Wouldn’t help above, since function is
intented to modify parameter.

any attempt to modify const parameter will be an error -- unfortunately this
doesn’t work in watcom c.

previous versions of notes: 6 pages of sample programs follow

simple matrix, row-column (height==row; width == column); has
HEIGHTxWIDTH individual elements

fill the array: select row, then traverse columns: coding view is array of 5
elements, each element is an array itself

nested for statements common usage. outer loop selects row, inner loop
traverses columns.

display the matrix, \n after each row

1) an array of strings, really a matrix of characters, either 5, 20-char strings
or 5x20 matrix of characters; 5x20=100 characters total

use the array or array concept to advantage:

2) missing subscript, names[i] select an entire array, which is a string

still don’t need &, since expression yields an array.

1

2

as stated

elements is product of each dimenstion size

good coding practice to use symbolic constants as shown here, write code to
use constants in for-loops etc.

previous versions: 3 page example program followed

many arrays are tables of information, commonly want to be able to initialize
them

C supports “structured” constants for initialization.

1) # elements given explicitly, followed by initial values for elements. if
elements missing, some default value (zero) [this generalizes to all variables,
in fact]

2) implicit # elements, # initial values determines # elements in definition.

1

2

code that computes # elements

3) sizeof compile-time function that given #bytes storage for a type or a
variable

3

strings are arrays, they can be initialized, too

string initialization: two styles

1) as array of characters: have to place \0 ourselves

2) using string literal, compiler inserts \0

choice depends on how you want to think about things

3) ? operator

1

2

3

proof

initializing an array of string == initializing a matrix of characters.

use representation that makes sense: 12 rows of 10-char strings

cannot omit second dimension in definition here: must know big strings are
(could omit first, compiler can count # strings), due to matrix idea,
rectangular block of characters, compiler will pad out to 10-char each.

storage representation of array

bad program, doesn’t bounds-check

matrix initialization: can use braces to construct an initializer that follows the
structure of the array.

here, 3 rows of 4 integers each

generally, can construct initializers for any number of dimensions, use {} to
show dimensions

previous versions: 4-page example program.

significant part of C’s expressive power comes from ability to
manipulate pointers. aka references, addresses.

consider a variable. sometimes we’re not interested in the contents of
the variable, we want the variable itself (box and contents analogy)

useful for efficiency, eg arrays, don’t want to transmit entire set of
values

also useful for accessing underlying hardware: computer memory is big
array of integers or bytes/characters

later, will see equivalence of pointers and arrays

1) ptr is a variable that contains a reference to an integer. ptr is not an
int, it is a pointer to an int.

2) ptr is assigned a reference to the variable x. ptr contains the address
of x.

unary & is the “address of” operator

1

2

explain slide:

comments show contents of variables. ignore last column for a second

starts out as...

assign 40 to x

1) assign 50 to wherever ptr points; assign 50 to the variable whose
address is contained in ptr. opposite of & (taking reference) -- call
dereferencing. aka indirection.

in this case, dereference as a target of assignment,

last column shows current dereference of ptr. go back and review.

[explain each line]

...

2) dereference as an expression

1

2

1) ptr is a pointer to a single character

2) single-char values

3) ptr is assigned the address of x. note that this is the same
expression as assigning an integer address. & yields a pointer in any
case, the definition specify precisely what it points to

1

3

2

same structure as before, comment columns show values

1) dereferencing a pointer, same as before. since its a ptr to char, we
assign a char.

1

have seen that array-names are already a reference, don’t need & to
get address of array. what would be an appropriate thing to store the
address of an array? eg foo = vector, how to declare foo? its a
reference, so suggests a pointer variable; but -- pointer to what?
pointer to same thing as the basetype of the array.

Eg: arrayname is pointer to first element, ignore the rest [chalkboard]

So arrayname is reference is pointer to basetype. what is subscripting?

start at first element and move along. can do this with [], can also do
with pointer arithmetic [chalkboard: +1 to char*]

So subscripting is equivalent to pointer arithmetic.

These concepts are fundamental to C: can use pointer variables and
array-names interchangeably

can subscript pointers, can do pointer dereferencing to array-names.

1) array of characters, not a “string” (no nullchar). all strings are array
of char, but not all array of char are string.

2) simple array subscripting, [] yields a single character

3) ptr arith on array-name (compute address and dereference)

1

2

3

4) pvctr gets address of first element of vctr

can also use pvctr = vctr since array name is already reference

5) pure pointer arithmetic. note same as array-name case

6) subscripting a pointer. the [] are really operators that are defined to
work on things containing an address -- any address will do. in this
case, operation is pretty much identical to preceding

7) cursoring: changing the pointer variable itself (moves the pointer
along the array)

8) loop termination: address comparison &vctr[4] is the address of the
last (5th) element. loop continues as long as not advances past end of
array

4
5

6

7
8

Now, similar to previous, but array of integers instead if array of
characters.

1) pointer to integer

2) simple array subscripting

3) pointer arithmetic on array-name (compute address and dereference)

--> same code as before (vctr + i): how can this work? adding one
would point at the middle of an integer

--> answer: C adjust for this size of the thing being derference of for the
size of the thing to which a pointer points. So, if vctr points at an 4-byte
integer, (vctr+i) becomes (vctr + i*sizeof(int))

so each increment of i adds 4 instead of 1

1

2

3

4) pure pointer arithmetic. +i adds sizeof(*pvctr)

5) subscripting a pointer. full definition of subscripting is

x[i] == *(x + i*sizeof(*x))

6) cursoring, moving the pointer. ++ here means “plus the size of the
thing to which I point”

4

5

6

Now, use character pointer to manipulate traditional null-terminated
strings. look at ways to get at individual characters within strings.

1) pointer to character

2) assign the address of the string literal to the pointer var. a literal
string is represented as an array of char (as discussed), so assigning
the string is really just assigning the address. the string literal
automatically contains a null (C adds it).

1

2

1) pure pointer arithmentic. compute and dereference to a single
character

2) termination condition: while not at a nullchar

3) subscripting a pointer variable

4) cursor (moving the pointer) forwards. termination same (not null), but
simpler expression, since pstr itself is moving

5) Note comma op. want to advance pointer and counter together.
counter doesn’t actually do anything for us in this loop (used in next
one)

6) cursor backwards. note clever predecrement to move from nullchar
(where previous loop ended). use i here for termination test. Note
comma operator

1
2

3

4

5

6

similar ideas. instead of dealing with individual chars, manipulate
strings.

printf control strings will have %s instead of %c

loop structure: display substrings of varying lengths. terminate at
nullchar

1) print strings instead of a char

2) no dereference: %s wants the address of a string, (pstr+i) is an
address expression that yields the address of a null-terminated string.

3) we want the address of a string, pstr[i] is a char, toss in the & to get
the address of the character, suitable as string address

4) move the pointer along the string. no dereference.

5) move the pointer backwards. still no dereference.

1
2

3

4

5

another example of relationship between pointers, characters and string

1) strchr is one of many functions that manipulate string. see library
reference. many are standard, many more are not.

Strchr looks for occurrence of single character in a string. returns
pointer to string, or null if not found

2) display string, no dereference, string address for %s

3) display character, dereference, single char for %c

preceding examples used pointer to string literal, not typical use.

in fact, trying to change a string literal might cause an error -- analogous
situation to array/string parameters discussed earlier.

more typical usage is to defin storage (eg string variable), and then
define a pointer to it

Note: can’t change the value of a string variable name (eg can’t do “str
= x”)

As noted, parameters to functions are passed either as actuial values,
or as references to values.

Arrays (incl strings) are passed by reference, scalars by value.

This means that function can modify caller’s data (if array), bu cannot
modify callers scalar data.

Sometimes want opposite of either. As noted not much protection for
arrays -- cannot stop dereferencing a pointer. For other case, where
want to modify caller’s scalar, pass a pointer to the scalar instead

can use either style: get reference explicitly and store, or use &

for functions that only modify a single value, use a return. for functions
that need to modify more than one thing, use references -- common use
is return value and error condition

Previously, used array notation to declare an array parameter to a
function.

But, arrays and ptrs are equivalent, so could use ptr notation just as
well

Choice is personal preference, technically equivalent. Depends what
the function does (eg just pass to along to other, to element-by-element
traversal etc).

if a variable is a container, then pointers refer to the containers, not the
contents. to get at the contents, first have to get to the container.

strong equivalence in C between array processing and pointer
processing

- pointer variables are useless by themselves, they must point to
something

declaring a pointer does not allocate storage to which the pointer points,
you must do this, either by assigning the address of a variable, or with
dynamic memory (next time)

On the general topic of data structuring.

have seen builtin-types int, char float, pointers

composite type array, collection of elements of same type.

other structuring facilities, strongly influenced by Pascal and related.
underlying principle is to model data according to application. could be
business-rules, hardware abstractions, whatever.

basic categories

we’ve seen most of the scalar, enum in a minute

for composite, will look at struct and union

struct: like records, dsect, structs in other langs

unions: several structs overlaid; assembler ORG, common block,
redefines, variant

automatic way of generating a sequence of integer constants.

eg error codes, want to reference with symbolic names, don’t care what
the actual numbers are

very important for defining format interfaces eg Windows has thousands

eg.

1) define a set of constants “enum process_status_constants”, given
symbolic names, compiler generates integer values

if we want, can specify value

behave same as #define or const int,

2) also define a new typename that can be used in same circumstances
as a built-in: var, function declarations and definitions.

Handy, too bad compiler doesnt enforce them (unlike Pascal): they’re
all integers. Some compilers may issue warniongs, may be some other
source-code management tools that can detect (eg lint)

1

2

preceding syntax requires two distinct definitions. can combine into
one:

1) the declaration of the enumeration

2) the declaration of the new type

Can also omit the enum name, so have

typedef enum

{

etc

} process_status;

in general typedef just declares an alias for another type. eg want to
rename int to integer, just say: typedef int integer

doesn’t work for arrays:

typedef char[50] string;

won’t work -- typedef is for type names, but an array specification isn’t a
name, its “repetition” of its basetype.

Struct is another example of a composite type.

arrays are homogeneous (all the same type); structs are heterogeneous
(can be different types).

just a way of grouping things together and giving a common name

declares only the shape: storage definition occurs when struct used to
defin a variable or function.

1) declaration of structure: three fields

Note style of syntax, no typedef in this case.

2) definition of variable; since no typedef, use struct-name directly.

3) references to the fields. use the . operator (field selection)

1

2

3

Another example

1) use a type definition, similar ideas to enum. define the fields (struct
student_data_fields), then define a type-name (student_data)

2) Use the type-name to define variable class as array of structs.

1

2

1) definition of local variable (single struct)

2) field references. use & as required. dot operator is higher priority
that &.

3) assign a struct in a single operation

4) array subscript, then dot. choose the element from the array. it’s a
struct, so choose the field from the struct.

1
2

4

3

structs are assignable, and are passed by value

use of () in (*me).age, is necessary, depends on priority of . wrt *

who can remember, use parentheses (in fact . is higher, so the
parentheses are not optional)

also : pointers to structs

student_data *me;

typedef student_data * sdp;

sdp me;

as stated

unions: several structs overlaid; assembler ORG, common block,
redefines, variant

like struct, declares only the shape

define a couple of structs, to be used in next

1) declare a union, similar syntax to structs (can also be separated into
two declarations, the union and the typedef)

four members:

an int called integer

a float called real

a Q called fraction -- ie a struct Q_fields

a C called complex -- ie a struct C_fields

2) define a variable

3) select the member of the union, and assign

4) select the member, then select the field

1

2
3

4

Need to fill in some details, go over some realities

We’ve seen simple uses of preprocessor.

almost a compiler in a compiler: variables, functions, conditional
evaluation,

control compilation in various ways

#include:

copy contents of file in place of #include line

can be nested, can get ugly-complicated

- have seen simple replacement: replace symbol with replacement text;
“in place”, traditional to use upper-case for constants

- can also parameterize to create macros, much like function calls. if
symbol followed by (with no space, macro definition

Consists of macro prototype and substitution text; identifiers in
prototype also occur in sub-text.

- compiler replaces macro-name with sub-text and replaces macro args
with actual values.

- macro definitions can be nested (eg could use pct in percent)

- macros vs functions? hard to say, remember macros expand. use
macros to avoid overhead of function calls (especially if lots of args);
macro args are typeless;

- undef: get rid of a symbol. OK if wasn’t there

- preprocessor decides which code is to be compiled

- mostly used is “big” programs that have multiple target systems or
multiple hosts

typical sequence of stuff

1) defined with no value, useful with ifdef/ifndef only.

2) #error: generate an error message. useful for complex macro &
preprocessor stuff

1

2

symbols useful for generating timestamps, etc in object code

#line directive for c code that is generated from elsewhere -- want to
give a reference back to original source (eg application generators)

pragmas: tell compiler to do something. like options, but while program
is compiling. Eg control code generation, error-message levels

[switch to development environment]

[look at stdio.h; ...\watcom\h

(reference wc users-guide search for pragma)

have seen how programs are arranged into functions

need a declaration in order to use a functio that is defined elsewhere

use extern declaration to make function known. strictly, this is called a
function prototype.

common way to organize: gather together all externat functions into a
provate header file, then include that header file in every module.
provides cross-check of function and argument types.

include same header-file everywhere

same technique for data, externs in the header file, create separate C
file that has nothing but data definitions

same include-file can contain data-structure, constants, other project-
wide entities.

In fact, standard files are nothing more that this, a bit formalized

very unix -- whitespace discarded

some systems may provide access as a single simple string

printf etc have variable # args, can be implemented in C

special syntax and features desifned explictly for this purpose (nice rule
about languages, must be ably to be implemented in themselves)

... is part of syntax

1) required header file (stuff is implemented as macros)

2) ... is part of syntax

3) va_list keeps track of things

4) we have to know what types to expect

5) va_start initializes things, need to know name of last non-varying arg
(must be at least one)

6) va_arg gets an arg of indicated type

7) va_end end varying processing, deallocates any storage

1

2

3

4

5

6

7

A function name is its address (like arrays)

Assigning a function-name to something yields its address.

how to declare/define a variable that will contain a function address?

1)

funcptr is s pointer (because of the *)

that takes an integer parameter (becasue of the arglist)

and returns an int (return type)

2) using a typedef to define a function-pointer type; define a variable
and even an array

(*jump_vector[5])(12)

Each different kinf of function (return types args) requires its own kind of
function-pointer declaration

this is a really ugly bit of syntax, since you have to read it from the
middle outwards

In most cases, conversions are automatic.. Can be useful as a
documentation feature to remind that conversions will occur.

If function prototypes are omitted, function parameter types will be
unknown, so automatic conversion not possible. can use typecasting,
although providing a prototype is a better solution.

for scalars, conversion changes representation; eg 2 byte int
converted to 4byte float

eg. if p is a pointer to some struct, but want to look at storage with a
different shape, use a cast

allocate a structure containing an int, use another structure to overlay
the int and get at sub-components.

expression: (*(b *)(ap).f_h

sp is a ptr; cast it to a ptr to b; dereference it; select field f_h

the () around ap are not needed in this case

Memory Management is library based not language based

- example: storing varying amounts of data provided interactively

- arrays either waste space, or occasionally too small

- pre-defined arrays are not suitable in general

- many data-structuring techniques, add-on products

extern -- global scope

static -- module/file scope

local -- function scope

dynamic -- known only if provided with address (not exactly scope in the
traditional sense)

ANSI standard functions:

malloc - get a piece of storage from operating environment

free - give storage back

get piece of storage, then use that storage as a variable.

Malloc returns a pointer to the storage, so all references to dynamically-
allocated storage are indirect (via a pointer)

Example, want an array of integers, but don’t know how big until
program is running.

some definitions first; remember that array name is same as pointer to
element of the basetype of the array.

1) get storage, return pointer and store. want “size” elements, each of
which is sizeof(*da) (ie the size of the entity to which da points ie int).
could also use “int” here, but prefer *da (more descriptive)

total storage is size*element

note, not sizeof(da) which is the size of the pointer.

2) malloc returns null if not available

3) da is pointer to int, but can also be used as array-name

NULL: sort of zero, actually “a pointer value toat does’t point at
anything”

1

2

3

1) stdlib.h -- standard file containing memory-manipulation functions

2) define struct and pointer types

1

1) get storage, return pointer and store

2) malloc returns null if not available

NULL: sort of zero, actually “a pointer value that does’t point at
anything”

[chalkboard walkthough]

note use of intermediate variables p and size not necessary, could use
fields in s directly.

2

1

Example, build and display a singly-linked list

1) unresolved forward pointer declaration

1

1) sizeof == compile-time; “get storage big enough to hold a list-
element)

- Note: program doesn’t check return of malloc!!

2) notation : dereference, then field select == (*current).data

builds the list backwards: [do blackboard walkthrough of construction]

note definition of current doesn’t use ptr type, uses *

1

2

displays the list. typical list-traversal

free the list. typical list-traversal. once storage is freed, cannot (should
not) be referenced. therefore, need two pointers, must get next value
before freeing.

programs should always free what they allocate. some environments
may provide a “free all” that undoes everything since the program
started. Others may provide a checkpoint facility that lats pgm free
everything back to checkpoint

1) library not language

2) standard defines names and basic semmantics; implementations are
free to implement as suits [sys call or not, efficiency, garbage collect
etc.]

3) almost always layered for real programs

4) there exists exception handling libraries for extraordinary situations

Code reusability becomes important for data-manipulation etc. Need
well-designed libraries

input 1 2 3 4 -1

We have seen some of the available library facilties.

Have a more detailed look.

Library is distinct from language, but still standardized. We’ll take a
look at the ANSI standard.

Much of the C std library is influenced by UNIX, notably I/O,
program/process control etc.

Every implementation provides more than the std lib. In some cases
the additional libraries are standardized by other oprganizations, eg
posix libraries, database libraries like ODBC & embedded SQL
bindings, gui standards like windows API, X, os2 PM etc.

These days, any significant software technology is rendered in C annd
C++.

The std defines library in terms of related function groups, like io, string
management, error handling etc. We’ll see these in a minute.

Why do we like standard libraries?

Why don’t we like standard libraries?

last pt: for embedded systems (instrumentation), want lean and mean,
can’t stand the overhead implied by an operating system, want to run C
programs on “bare machine” Such programs typically can’t use the
standard library, because of the interconnectivity.

learning curve. once of the reasons why we must delay this discusison
for so long: library functions use fu ll range of language features,
especially pointers

As noted, basic orgainzation is groups of related items.

Each group is identified by a header file, which contains delcarations,
definitions and references for any or all of functions, variables,
constants, datatypes, preprocessor macros etc (we’ll see datatype and
macros later)

here are the standard headers. some have just constants & datatypes,
others have dozens of functions. about 150 functions total.

take a quick look at what’s in each one. No details, not parameters:
use vendor reference.

to use: include the appropriate header. defined in such a way that any
interrelation is handled internally, users don’t need to be aware. can
include more than once (but why would you?)

As noted, lots of non-standard stuff. as soon as a program usued a
non-standard function, portability is at a risk. If using an industry-
standard function library, might be OK.

Eg: Watcom don’n mentions the following function categories. ANSI is
what we’re about to discuss. Some of thes other categories are trivial,
others are more complex that ANSI.

Intel -- hardware instructions and related

Watcom -- their own set of useful functions

[help library; contents; search “ANSI”]

individual character functions

is* take a char, return true/false

all the math, nothing but the math. take and return doubles

we’ve seen a good number of these

also various types (eg FILE) and constants that define defaults for
buffer sizes etc

a number of these “functions” are actually macros, as we’ll see next
week..

these functions generally all return something. some we’ve already
discussed. print functions return # characters processed. scan returns
items scanned.

btw scanf formats can contain ordinary characters: these are expected
to match input stream

Extensions: fcloseall, fdopen, vscanf, vsscanf

The miscellaneous category: lots of subcategories

converting strings to numbers of various sizes

random numbers

memory mgmt: allocating and freeing dynamic memory. More next
time.

program control: how to give up gracefully. UNix influence here.
Atexit: register a function that will be called at program exit time.

system: invoke command shell, if possible

as noted.

I can honestly say I’ve never used the multibyte functions, so don’t ask.

String: this one is important.

deals with strings, as we have discussed them: null char at the end.

also deals with “memory” vector of bytes with no null char. user
maintains length.

memmove vs copy: overlapping or not (copy not, move OK)

some string-scanning and searching functions like chr, cspn, pbrk
(pattern break), tok (build tokens)

support for processor time, time-of-date, formatting times, time
arithmetic

Other stadnard headers, minor ones:

errno: variable containing error number of most recent error, also
constants

limits: maxint, minint, fp characteristics

locale: part of posix influence: used for controilling multi-byte
behavious and some of the time functions (eg timezone difference)

setjmp: C actually has a goto stmt that we conveniently omitted
mentioning. notmally it is function scope: can only goto within a
function. setjmp/longjump are a mechanism for taking the “big flying
leap”

signal: asyncrronous error handling, also includes stuff like arithmetic
exceptions

vararg: c functions can have avariable # arguments. this stuff is
implemented with a combination of library functions and language
syntax. full details next week.

stddef: gathers together common types

IBM SAA CPI/C - Level 2 (SC09-1308)

as seen

integers are king, most operators defined to work conveniently with ints

1) auto -- default class for local variables, never need the keyword so
omitted, register means allocate to a machine register if possible

2) Volatile: modified in a way the compiler cannot know (e.g., interrupt
vector)

implications for optimizers flow control, storage alloc, etc.

1

2

also goto

functions are important

reference TOC of C library help

easier to program

small run-time environment

nice for ASM-class apps, system programs

vendor independence on most platforms

Downside: hard to learn, harder to get good at, easy to write bad,
buggy programs

	FLAVOUR
	ops
	STRINGS
	IO
	CONTROL
	PROGRAM
	array
	POINTERS
	TYPES
	DETAILS
	DYNAMIC
	LIBRARY
	SUMMARY

