
So as noted: remove, as much as practical, data storage and retrieval from
individual applications.
Concentrate this functionality into a single program (collection of programs).
Refer to this as a DB mgmt sys.
Then, make application programs get at data through the DBMS.

Important to understand that we want a “clean break” between app and DBMS.
I t DBMS i l t d t i Lik t thi k fIn current op-sys, DBMS implemented as a system service. Like to think of
sending a message (eg a request for some data) and receiving a reply (eg with
the data we requested)

Separation facilitates some immediate advantages:

DBMS can reduce redundancy by creating “see elsewhere” notes (think of manual filing
t)system)

Reduced redundancy means less inconsistency: Inconsistency arises when data
duplication for retrieval convenience -- because data stored in a single place, no change
of being inconsistent

Integrity: DBMS can create backups, checkpoints, logs transparently to apps (in waiting
until needed). Individual apps could do this, but centralized in DBMS means can
leverage the investment into all apps.

Restrictions. DBMS is a single point of access, so can add security easily (eg user-
names and passwords, encryption).

Conflicts: eg concurrency, performance. Multiple simultaneous applications through
single DBMS: can handle concurrency by serializing (only allowing one app access).
performance: DBMS can guarantee certain levels of response to apps, facilitate
priorities.

Also (and maybe most importantly): DBMS lets us achieve data-independence:
separation of users of data from definition and storage of data.

Look at this idea of data independence in more detail...

Seems like separating data from application code is good, has many advantages (really just an
extension of the concept of separating code and data that is preached by many programming
philosophies)
But, there are different aspects of independence:
- the data itself. apps shouldn’t need to worry about how to access data (eg finding it, getting it,
For a table, is it stored row-by-row or column by column? How many columns. column ordering.
Disk blocking factors)
- descriptions of the data ie the format/type of the data. Eg is the data characters, numbers,
bitmaps? Clearly, if the description of a given datum used by a pgm changes, the pgm must
h B t th d t b E if db t i b th ll d i tchange. But, other pgms need not be aware. Eg if our db contains both payroll and inventory

information, payroll applications should be completely independent changes to inventory data
organization.

Formally, we identify two kinds of data independence: physical, which lets pgms be
independent of how the data is stored onto its physical media; and logical, which is lets pgms
ignore organization of the dataignore organization of the data.
So, a pgm that is data independent doesn't care where DBMS stores data, or how DBMS stores
or accesses, or what other data/pgms DBMS is managing

sidetrack for a moment: have mentioned the notion of "tables" as the basis for relational DB.
Will clarify these ideas now.

Shown is an eg of a relational database:

- 3 tables, each has a name

- Tables are composed of rows and columns. each column has a name. each row can be p
disringuished from each other, somehow (some combinations of the columns is unique). the
set of columns (might be only one) is called the primary key, and its name is underlined.

The number of columns in a table is fixed; the number of rows varies.

columns from one table might be used in another table (eg vno in vendor to vno in
transaction). if we assume that the "vendor" table is the defining point, would want to restrict
contents of the vno column in "transaction" so that the values exist in "vendor" [this is
referential integrity]

––>Observe the foreign keysObserve the foreign keys

––>multi-column keys

Conventional to use diagrams to describe databases. Describes the schema, not
the instance

Preceding table diagrams are handy:
table name, attribute names, underline the attribute(s) (one or more) that is
guaranteed to be unique for the tuples.

another style of diagram that often is used to show the dependencies between
attributes in relation (the connections between columns in tables). The primary
key (the collection of unique attributes) is shown above the line; remaining are
below.

These two show the same relationThese two show the same relation.

Note that the domains (types) of the attributes are not shown in this diagram.
This is a common convention.

arrows point towards relation (table) where the attribute domain is (column
values are) defined
This servers as a constraint on the source relation: it says that the value in the
source relation must occur in the destination relation. In terms of domains, it
says that the domain of the source attribute is defined by the set of values in the
destination relation.
Officially, this connection is called a foreign-key constraint. The word
“f i ” i h th i “ l h ” (i i ht j t ll ll it“foreign” is has the meaning “elsewhere” (ie we might just as well call it an
“elsewhere” key constraint).

Back to SQL

one of the things is must do is be a DDL for DB, to define conceptual and external schemas. here is
the SQL DDL for the credit-card-company database.

DDL to define the tables in the conceptual schema, explain:

keywords and identifiers,

column names

data type keywords

primary key says the name of the column(s) that distinguish the row

"not null" unless otherwise specified, column values can be omitted (ie null), "not null" means cannot
be omitted - common for primary keys. Strictly, “null” has a very complicated meaning that we needn’t

t i t j tget into just now.

Appearance is much like a programming language struct/record definition. Remember terminology,
though: columns are attributes of the tuple, so this defines a tuple. datatypes are really attribute
domains (set of possible values that an attribute can be).

more of the same.
note that "not null" can be used on any attribute, not just primary keys.
"foreign key" identifies the arrows that we saw in the relation diagram a couple
of slides back. The "references" clause names other table and other column

Now, turn our attention to different principles of DB design.
Called normalization or “normal form” construction. Normal
forms are standardized ways of constructing schemas and tables
so that they conform to some set of rules. For example, we’ve
already mentioned 1st NF: it’s a rule that says that attribute
instances must be single valuesinstances must be single values.
Much of the interest in normal forms is motivated by the need to
understand what constitutes a “good” schema. If we have two
alternative designs, how can we decide which one is better? We
need a way of precisely measuring the “goodness” of a schema,
so that we can compare designs.

d li h id f hIn order to measure quality, we must have some idea of what we
want to achieve. DB design quality imvolves two conflicting
goals: we want to avoid redundancy, ie don’t store the same data
more than once. We also want to have a schema that is a
reasonable representation of the underlying enterprise rules, is
understandable and easy to manipulate. There’s no point in
haveing a perfect design if it is untenablehaveing a perfect design if it is untenable.

DB theorists have, over time, devised several normal forms that have many of the desired
features.. Normal forms have rules that reduce or minimize redundancy, and, at the same
time represent all enterprise rules The two best-known normals forms are 3NF and BCNFtime, represent all enterprise rules. The two best-known normals forms are 3NF and BCNF.
Other exist (2nd, 4th, 5th) but we won’t look at them. So, one way to measure the quality of
a schema is to see if it conforms to one of the normal forms -- if it does, it is deemed to be
“good” (acceptable, at least).
The real beauty of normal forms is that if a schema doesn’t conform, the theory tells us how to
rearrange the schema so that it does conform to a normal form. Doing so is called
Normalization -- the act of taking a scehma and transforming it into a normal form Thus aNormalization -- the act of taking a scehma and transforming it into a normal form. Thus, a
discussion of normal forms as a quality measure implicitly includes a design methodology,
since the two are really the same topic.
There are a number of different ways of approaching this topic. Traditional text, ours
included, take a rigorous mathematical approach, based on a things like functional
dependency, FD closure, minimal covers, lossy and lossless decompositions etc. This
approach is necessary if one wants to work with theory eg proofs about redundancy derivingapproach is necessary if one wants to work with theory, eg proofs about redundancy, deriving
transformation algorithms.
Our approach will differ. Will attempt to demonstrate problems and give examples of
solutions. Will define normal forms by example. We’ll define some terminology and give some
informal definitions. [without the underlying math, can’t deal with “real” (ie math) definitions]
From a design methodology viewpoint, normalization begins with a single table, and then

li i d iti til d i d l f i h dapplies successive decompositions until desired normal form is reached.

It is interesting to note that even though ER modelling and normalization are quite different
methods, they often produce very similar and even equivalent schemas. In fact the two
methods reinforce each other, and knowledge of both is useful whichever one uses day-to-
day.

To start our discussion, let’s consider a bad design.
We have a database that is intended to keep track of the suppliers of parts for
an parts vendor. It must track suppliers name,. location, what items we stock
get from that supplier and theprice of the item.
We start out by tossing everything into a single table, formally known as a
universal table. Because of the 1stNF rule, we have to duplicate indormation
whenever we get more that one item from a supplier (can’t have an attributewhenever we get more that one item from a supplier (can t have an attribute
that is a list of item) This organization is exceedingly common -- its a
spreadsheet. We see this kind of data organization all the time. [any
comments]
What kinds of things might we want to do? Queries -- probably OK.
Changes/updates: eg changing a vendor’phone number
Adding: want to add information fo a supplier but haven’t decided what partsAdding: want to add information fo a supplier, but haven t decided what parts
to get from that supplier; add information about a part we intend to sell, but
haven’t found a supplier for it yet.
deleting: decide to stop use Budd as a supplier for screws

Redundancy: lots of stuff in the table is duplicated.
wasted space, takes time; If we were tempted to say
that there should only be one row for each supplier,
remember that 1NF precludes such an organization. p g
Worse, it leads to...
Update anomaly: integrity problems: a change to one
of s1’s phone numbers must be made to all rows fo s1.
if we don’t, we will have a corrupt database, because it
is clear that every entry for s1 should have the same
phone number. Now, it turns out that it is possible in
SQL to give a query that would update all the
appropriate rows, but we would prefer a design that
prevented the potential for the error [constraints? no,
make inhereent in good design].

Insert anomaly: suppose that we want to add information about a vendor. with the
current design, we must have information about at least one item, which may or may
not be suitable. Similarly, if we add information about an item, we must have a vendor
with which to associate that information. This is clearly not acceptable. Could use
nulls, but still have all the same redundancy, space problems, really seriously
complicates application logic Besides p keys can’t be nullcomplicates application logic. Besides, p-keys can t be null.
Delete anomaly: the same problem exists for deleting row as for inserting rows.
suppose that we decide not to use the screws supplied by Budd. if we remove the row,
we lose track of Budd entirely.
Functional dependencies: think about the update anomaly again. it occurs because
a change to one of the instances of a phone implies a change to all of the instances of
phone numbers forall rows that have the same sno. Eg a change to one of s1 phone
numbers means all rows for s1 must be changed. In fact, there are several attributes
that go together with sno. By inspection, we could presume that the name, city and
phone attributes are related. If we find two rows with the same sno, then we expect to
find the same values in name, city, phone.
This relationship is called a functional dependency: We say that attribute sno
functionally determines attributes name, city and phone. Conversely, we say that city,
name and phone are functionally dependent on sno.
Note also that Ino is not functionally dependent on Sno. Intuitively, this seem to be a
problem -- the rows in the table seem to consist of two distinct groups: Supplier stuff
and item stuff.

Note that in normal circumstances, the functional dependencies are not determined by i
nspection, but are specifed as a part of the enterprise rules for the db that we are
creating. The specification of functionsl dependencies is similar to specifying ER
relationships

Now, look at these two tables. They are a decomposition of the previous table opposite of join).
We’ve split the information so that supplier informaiton is maintained independently from the item
information. The association between a supplied item and its supplier is done with a foreign-key
reference from the supplies table to the supplier table.
Splitting tables is actually quite a complicated matter. The textbook treatment on the topic is
mathematically-based. The mathematical representation of a table is its heading (ie set of columns)
and a set of functional dependencies. splitting a table is a matter of dividing the heading into two or
more subsets.
With this set notation, we can do things like for example look at what columns are common in both
parts of the decomposi tion -- this would be an intersection between the two subsets. One of the rules
about decomposition, for example, is that the union of all of the decomposed table headings must be
equal to the original table heading. Another rule is that joining all of the tables back together (with
the relational join operator) should give back the original table. This property is referred to as lossless
versus lossy decomposition,

In this example, we seem to have a pretty good decomposition: all the columns are there, and if you t s e a p e, we see to ave a p etty good deco pos t o : a t e co u s a e t e e, a d you
join these two tables, the original table results. The anomalies for supplier are gone. We still have a
problem, though. If we want to change an item-name, there is still some redundancy, and so the
update anomaly still exists. Similarly if we want to add a new item, we have to know its supplier and
a price. So, ...

Here we have split the suppliers table inteo even smaller
parts. Now we have a suppliers table with information
about tables, an items table with information about just the
items, and a supplies table that records the information
about which items come from what supplier, and the pricing pp , p g
information.

This decomposition looks really good. We have all the
columns, and a join between these three will yield the
original table (and, of course, a join bwtween item and
supplies will yield the preceding version of supplies)supplies will yield the preceding version of supplies).
Intuitively, this factoring seems good, because it puts related
information into its own table, and has a separate table that
represents the connection.
Of course, this arrangement should come as no surprise
whatsoever, since these three tables are exactly what we
would have created it we used an ER model with supplierwould have created it we used an ER model, with supplier
and item as the entities and supplies as the relati onship.
[clever, eh?]

We mentioned earlier that functional dependencies are normally given as part of the
enterprise rules for the database scheme. we didn’t actually have any here, we just inferred
them in a reasonable fashion. Indeed, the fact that the price in in the supplies table
suggests that an item price varies depending upon who supplies it. The other possibilitysuggests that an item price varies depending upon who supplies it. The other possibility
would be to place the price in the item table, in which case it would be more like a sale price.
The difference is that we control a sale price, but the supplier controls the supplied price.
Either is reasonable.

Using the tables as shown, we infer that Sno functionally determines Sname, city and
phone and that Ino functionally determines Iname and that the Sno Ino pair functionallyphone, and that Ino functionally determines Iname, and that the Sno-Ino pair functionally
determines price. Once again, these seem intuitive: for a given Sno, the name, city and
phone number are fixed. any use or reference to that Sno implies the dependent attributes. If
another row had the same Sno, then we woujld expect it to have the same three functionally-
dependent attributes (of course, that can’t happen in this table because of the uniqueness
rules). Now, here’s a coincidence: in each case, the attribute that functionally determines
the other attribute happens to be the primary key of the table. Of course, this is no t e ot e att bute appe s to be t e p a y ey o t e tab e O cou se, t s s o
conincidence at all. The process of specifying functional dependencies is pretty much the
same activity as defining entiy sets and their primary idenifiers in an ER model.

[these tables are in BCNF. in each table, every single attribute is functionally dependent on
the key for the table. Every original FD is preserved in one of the tables (preserve: for every
FD x >y there is a table where x u y is a subset of the table heading; or dependencies aren’tFD x->y there is a table where x u y is a subset of the table heading; or, dependencies aren t
split across tables)

The decomposition process can be carried too far. In this case we’ve deposed
everything into single-attribute tables. This is useless, for a number of reasons:
1) this decomposition is lossy. Remember that the result of decomposition
should be able to be joined back together to yield the original table. The join
of all these table is huge and certainly has not much to do with the original
table.
2) we’ve completely lost any representation of the original functional2) we ve completely lost any representation of the original functional
dependencies. Eg. an sname can change independently of an sno. (in this
decomposition, its so obvious that its hard to see) This is referred to as a non-
dependency preserving decomposition. What we want are dependency
preserving decompositions

[the importance of dependency preservation decompositions come up as[the importance of dependency preservation decompositions come up as
follows. We can thing of functional dependencies as uniqueness constraints. if
a fd lies in a table, then relational uniqueness guarantees no duplicate tuples. a
non-dependency-preserving decomposition will split an fd constraint across two
or more tables. when this happens, we have to join the tables in order to
determine if the fd still holds]

So what is ER all about? Must understand that is is just a design methodology that we use to
create the conceptual schema for a DB. Represents the overall structure of a DB. So, it
qualifies as as DDL, but as we’ll see, it is a two-step method that models data graphically first,
then produce table definitions, which we can render in SQL.
The process of constructing an ER model for a DB involves significant understanding of the
real-world enterprise that is being modelled. Sometimes hear the term enterprise model or
enterprise scheme.

At the core of ER modelling is the concept of viewing the world as entities -- things, objects,
identifiable distinguishable Eg customer car bank account course classroom instructor Inidentifiable, distinguishable. Eg customer, car, bank account, course, classroom, instructor. In
all cases, we can somehow tell entities apart.
The way that we distinguish entities is with their attributes or properties. Eg customer have
different names, cars are different models or colours, bank accounts have numbers,
classrooms have locations and capacities. So not only do we have entities, the entities have
attributes. These attributes can be descriptive, or can describe real-world be limitations on the
attributes Latter case are often called constraintsattributes. Latter case are often called constraints.
Once we have a collection of entities, we define relationships between the entities, ie how the
entities interact with each other. Eg a customer own a car, a course has an instructor.

ER modelling is a visual design method. It uses formalized diagrams (ER diagrams) to
describe entities, their attributes and their relationships. Once constructed, ER diagram is a , p , g
visual representation of the compete enterprise scheme. It can them be translated into a
relational schema and implemented in SQL. It can also be translated into any number of other
DDL. Some people have experimented with query languages that deal directly with ER
diagrams.

Note that ER modelling is a mature technology first described 20 years ago

So, a big example with lots of stuff.

section:course is n:1 there can be many sections of 1 course
a course can have min 1, max N sections; a given section can be a section of
only a single course
section:professor is n:1 there can be many sections taught by one professor
a section is taught by min 1 max 1 professors; a professor can teach from 0 to N
sections
section:student is n:n sections have many students, students take many sections
a section has a min of 6 max of 50 enrolled in it; a student enrolls in min 3 max
5 sections

For the most part, converting a diagrams to a set of table definitions is obvious.
We’ll look at several examples, covering each of the different bits of ER
diagram techniques that we looked at last time. Text references is the
“transformation rules” that pop up occassionally in the discussion of modelling.

This stuff really is quite intuitive -- don’t make the mistake of trying to read too
much into it.much into it.

So, ER diagrams consist of entity sets and relationship setss:
No surprise, entity set becomes a table, attributes of the entity become columns.
As it turns out, relationship sets also turn into tables, or nothing at all.

We've been skirting around the issue that there is a concise mathematical basis for the relational
DB model. Will take an informal look at this.
A relation is a connection between attributes and values, viewed as a table.
Mathematically, a relation is a set (a set of tuples that consist of attribute-value pairs). There is a
well-established mathematical system for doing things to sets including combining sets andwell-established mathematical system for doing things to sets, including combining sets and
choosing subsets.
Formally we're talking about an algebraic system, or just an algebra. An algebra consists of
operators (actions, verbs) and operands (objects, entities, nouns). Classic example is "algebra"
("ie "the algebra", no indefinite article) which is an algebra of numbers and arithmetic operators
like addition and multiplication. We're interested in an algebra of relations: relational algebra..
M th ti ll th ll t f ti l d d fi iti th t l ithMathematically, there are all sorts of assumptions, rules and definitions that go along with an
algebraic system. One very important one says that the result of an operation between two
operands is the same things as the operands. Eg adding two integers results in another integer.
this principle is called closure. Our algebra of relations will be closed, so that the result of an
operation between relations is another relation.
Why do we care about all this stuff? Because the relational algebra we define is, for the most

t th l th t ill t d thi t l ti l d t b S f thpart, the query language that we will use to do things to relational databases. Some of the
operators are ... [refer to list]. As we look at the definition of these operations, we will show
examples using a DML-style query.

Note about syntax: we use the text, others exist

Now take a look at several relational algebra operators

First operation is simple: reference. The result relation is the set of tuples
contained in the relation whose name is given.
Examples: in our examples, give an English phrase describing the relation that
we want (natural-language phrase), then give DML syntax.

From operator-operand viewpoint, "reference" is a unary operator: it results in
the named relation Idempotentthe named relation. Idempotent

––>Mention notation

[example]
i h f h l i- syntax is the name of the relation

- result is the named relation

Selection: a little more complex. used to choose a subset of the tuples in a
relation.

Will give the relation from which we want to choose, and some kind of
selection criteria (a condition).
Result is the rows in the relations for which the condition is true.

[example]
- syntax
- "reference" followed by "where clause"

condition here is "=" test for equality: must match exactly

Notation: σcondition(relation) eg: σcity=‘waterloo’(Vendor)

Conditions can be more sophisticated. Not only equality, but other
comparisons, too. Eg ordering (greater, less) for numbers (maybe strings). In
general, and operation that is defined on the domain of the attribute can be
used. Eg for strings, could have operations that convert to upper case, return
length of string, trim spaces. For numbers, usual arithmetic ops.

Can create complex conditions by connecting simple ones together with logicalCan create complex conditions by connecting simple ones together with logical
operators. [explain and or not??]

[example]
- two parts
- parenthesesp

projection: select one or more columns (ie from each tuple in the relation,
form a new relation using only the attributes indicated)

[example]
-syntax

Recall that relations are sets of tuples. Basic premise about sets is that there
b d li t if th d i th lt di d thcan be no duplicates, so if there are any dups in the result, discard them.

Another way of looking at this is to say that the result must be a relation, and
each tuple in a relation must be distinguished from each other.

Notation: Πattr(Relation) eg Πvname(Vendor)

Projection: choosing specific columns

Here we see a noticeable difference between SQL and the underlying relational
algebra. In RA, relations are sets, and cannot have duplicates. In SQL,
duplicate rows are allowed.
So, use the keyword “distinct” to indicate that we want duplicate rows removes
from the result of the selection.

using distinct is expensive and should be avoided unless absolutely necessary.
in a properly-designed database, should be able to eliminate most occurrences
of distinct. But: get the query correct first, then worry about performance

Cross product: for every row in R1, match it up with every row in R2.

[generally as stated. skip to example then back]

note that schemas must be disjoint: no common attributes. If there were, the
crossproduct would have two attributes with the same name, which isn't
permitted.

walk-through:
1, x with a, s

b, t
c, u

2, y with a, s etc

all the rows from one table without the rows from the other table
like union, tables have to have the same shape (relation schemas must be the
same)

[eg]
doing a set difference between two projections; vendors[vno] produces a
relation with a single attribute (the vno), transactions[vno] does the same. So,

h t (t) l ti ith h Diff i th iwe have two (temporary) relations with same schema. Difference is the rows in
the left one with the rows from the right one removed.

[work following example on board]
numerically: vendors[vno] has 4 rows: vnos 1, 2, 3, 4

trans[vno] has 3 rows: vnos 2, 3, 4 (trans has 5 rows, but
projection removes duplicates)projection removes duplicates)
so, {1, 2, 3, 4 } - {2, 3, 4 } = {1}

A very similar question.
Can ??? be "transactions" -- no, it doesn't have a Vname attribute
Intuitively, we know the answer is "sears", but how do we get it with a single relational expression?

Whatever ??? is, its schema must have a Vname attribute, and must contain tuples corresponding to
transactions. Sort of like transactions with Vname added.

The essential operation here is still to do a subtraction: vendors without transactions. in the
previous case it's straightforward, since we can do a subtraction directly on the projections of each
table (each table has the desired Vno).

However, in this case, the RHS of the subtraction is more complicated. recall cross-product: gives
all combinations of both relations. In our case, this would consist of tuples with both a vno and a co b o s o bo e o s. ou c se, s wou d co s s o up es w bo v o d
vname (plus lots extra).
unfortunately, the CP has some problems. First of all, it will have lots of tuples, more that we want
(we want just the tuples that represent the 5 transactions). We start out with a cross product between
the two tables, then select the rows that represent the original transactions. Also have a problem
with rule about disjoint schemas for CP: both relations have a vno, so can't cross them directly.

==========
also try: vendor[vname] where vno in vendor[vno] - transaction[vno]

vendor where vno in vendor[vno] - transaction[vno]

Cross-product of relations whose schemas have common attribute occurs often Relational
algebra has a "rename" operator to handle the problem.
Uses {} and "as" as the rename operator.
result relation is same as started with, with selected attributes renamed

So, answer to pending question is ...
note rename prior to product,
note where: says we only want the rows from the CP where the vendor vno is the same as the

transaction vno (ie the original transactions)

[next notes page: expression tree]

[optional material if suitable for class]
An expression tree for the query:

t4: minus
/ __________
| |

[vname] t3:[vname]
| || |

vendor where vno=v.vno
|

t2:times
/ \

t1:{vno as v.vno} transaction
||

vendor

(where t# references transactions given subsequently)

This kind of connecting or joining of tables is really
useful. Comes up whenever we have a query that
requires attributes from more that one table
In fact. this "crossproduct and select" operation is so

th t it i ft d fi d b i tcommon that it is often defined as a basic operator,
although we've see that it isn't really.
Called a join operator (aka natural join, eqijoin, key
join); it "joins two tables together using one or more
common or shared attributes.

Relational algebra has some other "composite" operatorsRelational algebra has some other composite operators.

Notation: A |><| B

========== additional notes for division, next page ===========================
for relations r1 and r2, assume that all attributes of r2 are in r1, and r1 has extra attribute.
The result of r1/r2 has exactly those extra attributes. So in our eg. we have r1=(v,c) and
r2=(c); the result r1/r2 has attribute (c)r2 (c); the result r1/r2 has attribute (c).

Algorithm for dividing r1/r2 where r2 consists of single attribute: group r1 into groups of the
result attribute. Eg groups r1 into groups over the (c) attribute. Each group of (c) values
contributes exactly one value to the result (ie the value of (c) for the group), as long as the
values in r2 (attribute (v)) are a subset of the values of (v) in the group.

This is a
cross-product

This is a join – it
selects only theselects only the
rows where the
common key
matches

simple cross-product is an implicit operation when a list of tables is given.
So, eg: vendor, transactions does a cross-product and yields the 20-row, 9
column tables we saw previously.

These tables have commonly-named columns. Notice that we don’t necessarily
have a problem with duplicate column-names, SQL doesn’t care in this case,
since we aren’t referring to any of the duplicated columns

However, in cases where want to refer to a commonly-named column, need to
create an alternate name. This typically arises when we want to do a join (since
h i d b l)there is supposed to be a common column)

Use: table-name as alternate; can then use alias wherever needed to
disambiguate. Renames the whole table, not just one column

Alternate name: correlation name == tuple variables = table alias;

More laterMore later

