
CS 338 Relational model & SQL 2-1

The Relational Data Model
and SQL

Lecture topics:
• basic concepts and operations of the

relational model
• the SQL query language

References:
• text 3rd edition: Chapter 7; Chapter 8,

sections 1–5; supplementary material
– Chapter 22, sections 1-2

• text 4th edition: Chapter 5; Chapter 6,
sections 1–4; Chapter 8, sections 1–6;
Chapter 9, section 2; supplementary
material – Chapter 23, sections 1-2

• DBMS vendor documents

CS 338 Relational model & SQL 2-2

Basic relational concepts

Relating to descriptions of data:

• Attribute (column): a name denoting
a property or characteristic

• Relation schema (table header): a
finite set of attributes and a mapping of
each attribute to a domain (defined
below)

CS 338 Relational model & SQL 2-3

Relating to data:
Domain: an “abstract data type” (i.e. a

name, a set of values and a number of
functions defined over the values)

• Null value: a special exception value
(meaning “not known”, “not
applicable”)

• Tuple: a set of attribute/value pairs,
with each attribute occurring at most
once

• Relation (table): a relation schema,
and a finite set of tuples

• Relational database: a finite set of
relation names and a mapping of each
relation name to a relation

...continued

CS 338 Relational model & SQL 2-4

Other:

• Intention of a relation: the associated
relation schema

• Extension of a relation: the associated
set of tuples

...continued

The relational model assumes no ordering
of either rows or columns for any table.

CS 338 Relational model & SQL 2-5

Basic rules

• Domain constraints: the value
associated with each attribute in a
tuple must occur in the set of values
associated with the domain of the
attribute; or the value is Null

• First normal form: domain values
cannot be tuples or relations

• Completeness: each tuple in a
relation has an attribute/value pair for
precisely the set of attributes in the
associated relation schema

• Closed world: the database “knows
of” all tuples in all relations

• Unique rows: no two distinct tuples in
any given relation consist of the same
set of attribute/value pairs

CS 338 Relational model & SQL 2-6

Keys

• Relation superkey: a subset of the
associated relation schema for which no
pair of distinct tuples in the relation will
ever agree on the corresponding values.

• Relation candidate key: a minimal
superkey

• Relation primary key: a distinguished
candidate key of the relation

• Foreign key: primary key of one
relation appearing as attributes of
another relation

• Foreign keys enable capturing more
complex entity structure

CS 338 Relational model & SQL 2-7

Integrity of primary and
foreign keys

• Entity integrity: No component of a
primary key value may be the null
value, nor may be updated.

• Referential integrity: A tuple with a
non-null value for a foreign key that
does not match the primary key value
of a tuple in the referenced relation is
not allowed.

CS 338 Relational model & SQL 2-8

Relational algebra

• Proposed by E.F. Codd (1972) as basic
means of manipulating data in a relational
database

• A procedural query language, with
fundamental operations:
– reference
– selection
– projection
– cross product
– set union
– set difference
– renaming

Algebra: Set of operators mapping
existing relations to new relations

CS 338 Relational model & SQL 2-9

Reference: referring to an existing relation
Notation: Id
Value: the relation named by Id
E.g. “The Vendors”

Vendor

Result: (a duplication of the Vendor table)

Reference

Vno Vname City Vbal
1
2
3
4

Sears
Walmart
Esso
Esso

Toronto
Ottawa
Montreal
Waterloo

200.00
671.05

0.00
2.25

CS 338 Relational model & SQL 2-10

Selection

Selection: choosing some rows from a
relation
Notation: σC(R)

where R is a relation and C is a condition on
individual rows of R
Value: those rows of R for which condition
C is true

E.g. “The vendors in Waterloo.”

σCity = 'Waterloo'(Vendor)

Result:

Vno Vname City Vbal
4 Esso Waterloo 2.25

CS 338 Relational model & SQL 2-11

…continued

E.g. “Vendors that are in Toronto or have a
balance exceeding 100.”

σ(City = 'Toronto' OR Vbal > 100)(Vendor)

Result:
Vno Vname City Vbal
1
2

Sears
Walmart

Toronto
Ottawa

200.00
671.05

Selection condition may:
• test for equality (=) between attributes and

values, and
• invoke function calls on underlying

domains
To ease writing queries, may:
• build more complicated conditions using

logical connectives AND, OR and NOT

CS 338 Relational model & SQL 2-12

Projection

Projection: drop attributes from the result
Notation: πA1,..., An(R)
where Ai are attributes in the relational
schema of R
Value: R restricted to attributes in Ai

E.g. “Vendor names.”

πVname(Vendor)

Result: Vname
Sears
Walmart
Esso

Because relations are sets, any resulting
duplicate rows are removed

CS 338 Relational model & SQL 2-13

Cross product

Cross-product: pairing all possible
combinations of tuples from two relations
Notation: R1 × R2
where R1 and R2 are relations with
disjoint relational schema
Value: every tuple in R1 unioned
("matched") with every tuple in R2

May generate a very large relation:
• Number of tuples in result = (number of

tuples in R1) X (number of tuples in R2)
• Number of values in result tuple =

(number of values in an R1 tuple) +
(number of values in an R2 tuple)

CS 338 Relational model & SQL 2-14

E.g.

R1

A B
1
2

x
y

R2

C D
a
b
c

s
t
u

R1 × R2

A B C D
1
1
1
2
2
2

x
x
x
y
y
y

a
b
c
a
b
c

s
t
u
s
t
u

…continued

CS 338 Relational model & SQL 2-15

Set union

Union: merging two relations
Notation: R1 ∪ R2

where R1 and R2 are relations with
equivalent relational schema

Value: all tuples in R1 or in R2 (or in both)
E.g. “Vendors that are in Toronto or have a
balance exceeding 100.”

σCity = 'Toronto' (Vendor) ∪
σVbal > 100 (Vendor)

Result:

Vno Vname City Vbal
1
2

Sears
Walmart

Toronto
Ottawa

200.00
671.05

CS 338 Relational model & SQL 2-16

Set difference

Difference: excluding tuples of one relation
Notation: R1 − R2

where R1 and R2 are relations with
equivalent relational schema

Value: Tuples in R1 that are not in R2.
E.g. “Vendor numbers for vendors with no
transactions.”

πVno(Vendor) − πVno(Transactions)

Result:
Vno

1

CS 338 Relational model & SQL 2-17

Another e.g. “Vendor names for vendors
with no transactions.”

πVname(Vendor) − πVname(???)

Result:
Vname
Sears

Discussion:
• Why is the previous example easy, but

the above more complex?
• Vno attribute is common to both

relations, but Vname is not
• Use a cross-product

…continued

CS 338 Relational model & SQL 2-18

• Use a cross-product to form a table with the
desired attributes added to the rows

• How many rows in the C.P.? Too many!
• Use a selection to choose the right rows
• Attribute name problem: need to rename

one of the VNo attributes temporarily
• E.g. “Vendor names for vendors with no

transactions.”

πVname(Vendor) −
πVname(σVno = V.Vno(ρVno as V.Vno(Vendor) ×
Transaction))

Result:

Cross-product and select

Vname
Sears

CS 338 Relational model & SQL 2-19

Step-by-step

πVname(Vendor) Vname
Sears
Kmart
Esso

ρVno as V.Vno(Vendor)

1
2
3
4

Sears
Walmart
Esso
Esso

Toronto
Ottawa
Montreal
Waterloo

200.00
671.05

0.00
2.25

V.Vno Vname City VBal

Transaction

Tno Vno AccNum Tdate Amount
1001
1002
1003
1004
1005

2
2
3
4
4

101
103
101
102
103

20060115
20060116
20060115
20060120
20060125

13.25
19.00
25.00
16.13
33.12

CS 338 Relational model & SQL 2-20

ρVno as V.Vno(Vendor) × Transaction

1 Sears Toronto 200 1001 2 101 20060115 13.25
1 Sears Toronto 200 1002 2 103 20060116 19
1 Sears Toronto 200 1003 3 101 20060115 25
1 Sears Toronto 200 1004 4 102 20060120 16.13
1 Sears Toronto 200 1005 4 103 20060125 33.12
2 Walmart Ottawa 671.05 1001 2 101 20060115 13.25
2 Walmart Ottawa 671.05 1002 2 103 20060116 19
2 Walmart Ottawa 671.05 1003 3 101 20060115 25
2 Walmart Ottawa 671.05 1004 4 102 20060120 16.13
2 Walmart Ottawa 671.05 1005 4 103 20060125 33.12
3 Esso Montreal 0 1001 2 101 20060115 13.25
3 Esso Montreal 0 1002 2 103 20060116 19
3 Esso Montreal 0 1003 3 101 20060115 25
3 Esso Montreal 0 1004 4 102 20060120 16.13
3 Esso Montreal 0 1005 4 103 20060125 33.12
4 Esso Waterloo 2.25 1001 2 101 20060115 13.25
4 Esso Waterloo 2.25 1002 2 103 20060116 19
4 Esso Waterloo 2.25 1003 3 101 20060115 25
4 Esso Waterloo 2.25 1004 4 102 20060120 16.13
4 Esso Waterloo 2.25 1005 4 103 20060125 33.12

…continued

CS 338 Relational model & SQL 2-21

σVno = V.Vno(...etc...)

πVname (...etc...)

Vname
Walmart
Esso

πVname(Vendor) − (...etc...)

Vname
Sears

V.Vno Vname City Bal Tno Vno AccNum Tdate Amount
2 Walmart Ottawa 671.05 1001 2 101 20060115 13.25
2 Walmart Ottawa 671.05 1002 2 103 20060116 19
3 Esso Montreal 0 1003 3 101 20060115 25
4 Esso Waterloo 2.25 1004 4 102 20060120 16.13
4 Esso Waterloo 2.25 1005 4 103 20060125 33.12

• a cross-product followed by a select is
called a join (also equijoin, nautral join)

…continued

CS 338 Relational model & SQL 2-22

• Renaming: temporarily changing names
of attributes

• Notation: ρA1 as B1,..., An as Bn (R)
where R is a relation and An are
attributes of R

• Value: same as R, with attribute Ai
replaced by attribute Bi (attribute name
Ai replace by Bi)

Attribute renaming

CS 338 Relational model & SQL 2-23

Additional operators
Do not increase expressive power, but make
life easier:
• set intersection: ∩
• join (cross-product & select): ⊗
• division: ÷
• assignment: ←

Assignment
Notation: NewR ← R
Value: creates a relation named NewR
identical to R
E.g. “Vendor names for vendors with no
transactions.”

T1 ← ρVno as V.Vno(Vendor)
T2 ← T1 × Transaction
T3 ← πVname(σVno=V.Vno(T2))
T4 ← πVname(Vendor) − T3

CS 338 Relational model & SQL 2-24

The SQL query language

• Expressing the algebraic operators

• More examples of querying in SQL

• Expressiveness and limitations

CS 338 Relational model & SQL 2-25

Retrieving all information
from a table

E.g. “The vendors.”

select * from Vendor

CS 338 Relational model & SQL 2-26

Selecting data

E.g. “The vendors in Waterloo.”

select * from Vendor
where City = 'Waterloo'

E.g. “Vendors that are in Waterloo or
have a balance exceeding 100.”

select * from Vendor
where City = 'Waterloo'
or Vbal > 100

CS 338 Relational model & SQL 2-27

Projecting columns

E.g. “The names of vendors.”

select distinct
Vname from Vendor

But, note:

select Vname
from Vendor

Vname
Sears
Walmart
Esso
Esso

In SQL, a query returns a multiset
of tuples; that is, the same row can
appear more than once.

Vname
Sears
Walmart
Esso

CS 338 Relational model & SQL 2-28

E.g. “Names of customers and vendors that
have a common transaction.”

Solution 1:
select Vname, Cname
from Customer, Transaction, Vendor
where Transaction.AccNum =

Customer.AccNum
and Transaction.Vno = Vendor.Vno

• column names appearing in several tables
must be made unambiguous

• alias: a name for referring to a table.
• terminology: table aliases, tuple variables,

correlation names

Table aliases

CS 338 Relational model & SQL 2-29

Solution 2:
select Vname, Cname
from Customer as C,

Transaction as T,

Vendor as V
where T.AccNum = C.AccNum
and T.Vno = V.Vno

Alternate syntax:
select Vname, Cname
from Customer C, Transaction T,

Vendor V
where T.AccNum = C.AccNum
and T.Vno = V.Vno

…continued [table aliases]

CS 338 Relational model & SQL 2-30

Cross products and joins

E.g. “All combinations of vendors and
transactions.”

select * from Vendor, Transaction

E.g. “Names of vendors and their transaction
amounts.”

select Vname, Amount
from Vendor V, Transaction T
where V.Vno = T.Vno

Vname Amount
Walmart 13.25
Walmart 19

Esso 25
Esso 16.13
Esso 33.12

CS 338 Relational model & SQL 2-31

Set difference

E.g. “Vendor numbers for vendors with no
transactions.”

select Vno from Vendor V
where not exists
(select * from Transaction T
where T.Vno = V.Vno)

• not defined explicitly in earlier standards;
standard in SQL92; some products do
support it (EXCEPT)

• use exists, subselects to compute set
difference

CS 338 Relational model & SQL 2-32

Subselects

• Select statements can be nested almost
anywhere:

• in a select list:
– lists vnames for each transaction
select tno, (select vname from
vendor v where v.vno = t.vno)
from transaction t

– subselect returns single attribute & row
• in a from clause:

– list tno & vnames for Waterloo vendors
select tno, v.vname
from transaction t,
(select * from vendor
where city='Waterloo') as v

where t.vno=v.vno

– subselect returns a table with alias
– similar to views (without the view defn!)

CS 338 Relational model & SQL 2-33

…continued [subselects]

• In a where clause:
select * from transaction t

where exists
(select * from vendor v
where city='Waterloo'
and v.vno=t.vno)

– useful with exists, not exists
– also useful with in operator

(discussion following)
– can be used in place of any single

value (see discussion on aggregate
functions following)

CS 338 Relational model & SQL 2-34

Outer Join

• Consider the following schema:
– F(fid, name, dean, budget, etc);

foreign key dean references FM(eid);
– FM(eid, name, rank, salary, etc);

• Query: list all FMs and the name of the
faculty of which he/she is the dean

• Easy to do the other way: list all faculty
and the name of the dean

– following the FK connection “towards”
the primary key is easy, but the
opposite direction might not be

– might not be any corresponding value

CS 338 Relational model & SQL 2-35

…continued [outer join]

• use select list subselect:
select eid, name, rank,

(select F.name from F
where F.dean = FM.eid)

from FM

• if no row results from the subselect, NULL
is substituted

– produces a column consisting of the name
of the faculty the FM is dean of, or NULL

– won’t work if someone is dean of more
that one faculty (why?)

• SQL defines a special operator to do this:
select eid, FM.name,

rank, F.name
from FM left outer join F
on F.dean = FM.eid)

CS 338 Relational model & SQL 2-36

…continued [outer join]

• variations of outer join:
– left outer join

– right outer join

– full outer join

• require use of on clause to identify
foreign-key relationship

• basic operation:
– preserves all the rows in one table, and

supplies nulls for the other table when it
does not meet the join condition

CS 338 Relational model & SQL 2-37

Computing a set union

E.g. “Vendors that are in Waterloo or have
a balance exceeding 100.”

(select * from Vendor
where City = 'Waterloo')

union
(select * from Vendor
where Vbal > 100)

CS 338 Relational model & SQL 2-38

More on SQL Queries

E.g. “Vendor names for vendor numbers 1,
2 and 3.”

select Vname from Vendor
where Vno in (1,2,3)

Result:
Vname
Sears
Walmart
Esso

• selecting rows based upon set
membership

• in: set membership

CS 338 Relational model & SQL 2-39

E.g. “Names of vendors with no transactions
on January 16, 2006.”

select Vname from Vendor
where Vno not in
(select Vno from Transaction
where Tdate = 20060116)

Result:
Vname
Sears
Esso
Esso Recall that SQL does

not remove duplicates
automatically.

• membership testing often useful with
subqueries

…continued [in predicate]

CS 338 Relational model & SQL 2-40

select distinct Vname from Vendor
where Vno not in
(select Vno from Transaction
where Tdate = 20060116)

Result:

Vname
Sears
Esso

• avoiding duplicates: distinct

…continued [in predicate, select distinct]

CS 338 Relational model & SQL 2-41

…continued [column aliasing]

E.g. “Names of vendors and customers.”

(select Vname as Name
from Vendor)

union
(select Cname as Name
from Customer)

CS 338 Relational model & SQL 2-42

• terminology: column aliasing, expression
aliasing

• can be used for column titles

...continued [column aliasing]

E.g. “Transaction amounts for Esso.”

select Amount
as "Transaction Amounts"
from Vendor, Transaction
where Vendor.Vname = 'Esso'
and Vendor.Vno = Transaction.Vno

Result:

Transaction Amounts
25.00
16.14
33.12

CS 338 Relational model & SQL 2-43

E.g. “Names of customers with all
transactions on vendors in the same city.”

select Cname from Customer C
where exists
(select * from Transaction T1,

Vendor V1
where T1.AccNum = C.AccNum
and T1.Vno = V1.Vno
and not exists
(select * from Transaction T2,

Vendor V2
where T2.AccNum = C.AccNum
and T2.Vno = V2.Vno
and V1.City <> V2.City))

• testing for (non-)emptiness of a subquery
• exists sub-query: true if value of sub-

query contains at least one tuple

…continued [exists predicate]

CS 338 Relational model & SQL 2-44

• tables are sets, order of rows
indeterminate

• may want/need to order (sort) results

E.g. “Names of customers living in Ontario,
in alphabetical order.”

select Cname from Customer
where Prov = 'Ont'
order by Cname

…continued [row ordering]

CS 338 Relational model & SQL 2-45

E.g. “Vendor cities, names and balances
in alphabetical order of vendor names
and in descending order of balances.”

select City, Vname, Vbal
from Vendor
order by Vname, Vbal desc

Result:

City Vname Vbal
Waterloo
Montreal
Ottawa
Toronto

Esso
Esso
Walmart
Sears

2.25
0.00

671.05
200

…continued

CS 338 Relational model & SQL 2-46

Additional operators for predicates:
• like pattern: string pattern matching

% matches any string (including zero-
length)

_ (underscore) matches any single
character

• Attr between Value1 and Value2
≡ ((Attr >= Value1) and

(Attr <= Value2))

…continued [operators, string matching]

CS 338 Relational model & SQL 2-47

E.g. “Employees whose name consists of
‘Wong’ preceded by five characters, and who
live on Elm street.”

select Name from Employee
where Name like '_____Wong'
and Street like '%Elm street'

E.g. “Names of vendors whose balance is
between $100 and $500.”

select VName from Vendor
where VBal between 100 and 500

Name Street
A. Wong
B.C. Wong
E.F. Wong
G.H.I. Wong

123 Elm street
1 Elm street
456 Elm street
456 Elm street

Employee:

…continued [operators, between]

CS 338 Relational model & SQL 2-48

Aggregate functions:
• count(*)

– number of tuples
• count(column)
 count(distinct column)

– number of (nonduplicate) values
• sum(expr)

 sum(distinct expr)
– sum of values

• avg(expr)

 avg(distinct expr)
– average of values

• max(expr)
– largest value

• min(expr)
– smallest value

…continued [aggregate functions]

CS 338 Relational model & SQL 2-49

E.g. “Number of transactions.”
select count(*) from transaction

E.g. “Number of vendors with transactions.”
select count(distinct Vno) from

transaction

E.g. “Total vendor balances.”
select sum(Vbal) from Vendor

E.g. “Average customer balance.”
select avg(Cbal) from Customer

E.g. “Transactions of less than average amt”
select * from transaction

where amount < (select

avg(amount) from Transaction)

…continued [aggregate functions]

CS 338 Relational model & SQL 2-50

• grouping rows together, according to a
common value

• Syntax:
select list group by columns

• list contains only attributes used for
grouping, or aggregate functions applied
to the groups

AccNum SUM(Amount)
101
102
103

38.25
16.13
52.12

E.g. “The total amount of transactions for
each account.”

select AccNum, sum(Amount)
from Transaction
group by AccNum

Result:

…continued [row grouping]

CS 338 Relational model & SQL 2-51

• grouped select can be ordered,
subject to the same restrictions on the
select list

E.g. “The total amount of transactions for
each account, in increasing order of
amount.”

select AccNum, sum(Amount)
from Transaction
group by AccNum
order by sum(Amount)

Result:
AccNum SUM(Amount)

102 16.13
101 38.25
103 52.12

…continued

CS 338 Relational model & SQL 2-52

E.g. “The total amount of transactions for
accounts that have more than one
transaction.”

select AccNum, sum(Amount)
from Transaction
group by AccNum
having count(*) > 1

Result:

AccNum SUM(Amount)
101
103

38.25
52.12

• groups can be qualified using having

…continued

CS 338 Relational model & SQL 2-53

Select statement syntax

• For all selects:
select [all | distinct] exp {,exp}
from table [[as] alias]

{,table [[as] alias] }
[where cond]
[group by col {,col}
[having cond]]
[union [all] select]

• For top-level queries:
select

[order by resultcol [asc | desc]
{,resultcol [asc | desc]}]

CS 338 Relational model & SQL 2-54

Semantics of an SQL query

• compute cross product of all tables in
from clause

• eliminate rows not satisfying where
condition

• group rows according to group by
clause

• eliminate groups not satisfying having
condition

• evaluate expressions in select target
list

• eliminate duplicate rows if distinct
specified

• compute union of each select
• sort rows according to order by

CS 338 Relational model & SQL 2-55

The power of the SQL query
language

• can express anything in the relational
algebra, and more:
– result of a query can have duplicate tuples
– result of a query can be ordered
– can count
– aggregate functions & grouping

• there are limitations:
– other aggregate functions?
– no aggregate functions on subqueries
– no recursion or iteration
– generalized constraints
– not programmable like ordinary

programming languages

CS 338 Relational model & SQL 2-56

More views

• Definition: a view is a derived table
whose definition, not the table itself, is
stored
– the set of views and tables comprises

the external schema
• Creating a view:
CREATE VIEW viewname
[(column-name) [,column-name])]
AS select-statement;

• Example:
CREATE VIEW VTotals(vno,amt)
AS SELECT Vno, SUM(Amount)
FROM Transaction
GROUP BY Vno

• Removing views:
DROP VIEW viewname

• Example:
DROP VIEW Vtotals

CS 338 Relational model & SQL 2-57

...continued

• A view is a virtual table that is
computed dynamically (not stored
explicitly)

• Any derivable table can be defined as
a view (some minor restrictions on the
SELECT)

• A table defined as a view can be used
in the same way as a base table:
– retrieval (SELECT)
– view definition (view of view)

• But: updates can be performed only
on certain views
– views derived from a single base table
– views with each row and attribute

corresponding to a distinct, unique row
and attribute in the base table

CS 338 Relational model & SQL 2-58

Pros & cons of views

• Views provide several advantages:
– users are independent of DB growth
– users are independent of DB

restructuring (except for updating)
– users’ perception can be simplified
– the same data (base table) can be

viewed in different ways by different
users

– security for hidden data
• Problem with views:

– creating & view requires special
permission (DBA or “resource”)

– can use nested selects instead of view-
name, i.e. use the select statement that
defines the view

• can be arbitrarily complex, including
aggregates, having, union, etc

CS 338 Relational model & SQL 2-59

The “view update” problem

• Consider the previous view example:

CREATE VIEW VTotals(vno,amt)
AS SELECT Vno, SUM(Amount)
FROM Transaction
GROUP BY Vno

• An update to this view cannot be
translated to a base-table operation

• Example:
UPDATE VTotals SET amt=amt+1

– what rows in Transaction should be
modified??

• There is no simple answer:
– non-deterministic
– still a research problem:

• DBMS can try to guess
• force the user/DBA to decide

CS 338 Relational model & SQL 2-60

Nulls in SQL
• Unknown: not yet known, but will be

known eventually
• Not applicable: does not apply to a

particular tuple
• Not the same as 0 or ‘’ (null string)
• “Not applicable” often used to simplify DB

design
• Null values complicate expression

evaluation. E.g.:
select average(vacation) from emps

select count(*) from emps

select name from emps
where vacation <= 10

select name from emps
where vacation > 10

• Solution: three-valued logic

CS 338 Relational model & SQL 2-61

Three-valued logic

• A where predicate returns unknown for
any tuple that contains null

• Null also results from empty (sub)selects:
select name from emps

where exists(select...)
• Relational operations =, <>, <, <=, >, >=

yield unknown if either operand is null
• Cannot use =, <> to test null, use:

expr is null
expr is not null

• Test for unknown with:
expr is unknown

• Three-valued logic tables:

and T F U
T T F U
F F F F
U U F U

or T F U
T T T T
F T F U
U T U U

not
T F
F T
U U

CS 338 Relational model & SQL 2-62

Review of SQL statements

• DDL: {create|drop} {table|view},
grant, revoke

• DML: insert, delete, update,
select

• more later (e.g. transaction processing)

Examples:

create table EssoVendors
(Vno INTEGER not null,
City VARCHAR(10),
Vbal DECIMAL(10,2),
primary key (Vno));

insert into EssoVendors
select Vno, City, VBal
from Vendor
where Vname like '%Esso%'

CS 338 Relational model & SQL 2-63

insert into EssoVendors
values (5, 'Kitchener', 123.45)

insert into EssoVendors
(Vbal, Vno, City)
values(666.66, 6, 'Route 66')

update EssoVendors
set Vbal = Vbal * 1.01

update EssoVendors
set Vbal = Vbal * 1.02
where Vbal < 50.00

delete from Transaction
where Vno in
(select Vno from EssoVendors)

…continued

CS 338 Relational model & SQL 2-64

The “last word” on SQL –
for now

• Many, many details omitted
– table-spaces, named schemas
– table ownership
– stored procedures & triggers
– constraints (unique, check, …)
– and others

• Most commercial products implement
their own version of SQL
– typically a cross between SQL89 and

SQL92
– lots of extra features
– “your mileage may vary”

• The SQL vendor documents are
essential to any realistic SQL project

CS 338 Relational model & SQL 2-65

Supplementary material:
Security in SQL

• The GRANT and REVOKE statements are
used to:
– maintain users and user groups for a

database
– maintain DDL privileges for users and user

groups
– maintain DML privileges for users and user

groups

E.g. “Create a new user called Grove, with
password abc.”

GRANT CONNECT TO Grove IDENTIFIED BY "abc";

E.g. “Add a benefits group to the database
with access to the employee table.”

GRANT CONNECT TO benefits;
GRANT GROUP TO benefits;
GRANT ALL PRIVILEGES ON Employee TO benefits;

CS 338 Relational model & SQL 2-66

E.g. “Make Grove a member of the benefits
group.”

GRANT MEMBERSHIP IN GROUP benefits TO Grove;

E.g. “Create a new user called George,
password xyz, with the authority to execute
SQL DDL statements.”

GRANT CONNECT TO George IDENTIFIED BY xyz;
GRANT RESOURCE TO George;

E.g. “Make Mary the database administrator,
with password ‘change quickly’.”

GRANT CONNECT TO Mary
IDENTIFIED BY "change quickly";

GRANT DBA TO Mary;

...continued

CS 338 Relational model & SQL 2-67

E.g. “Have Mary change her password and
revoke Grove’s membership in benefits, but
still allow him to query the employee table.”

CONNECT Mary IDENTIFIED BY "change quickly";

GRANT CONNECT TO Mary IDENTIFIED BY "xvqmt";
REVOKE MEMBERSHIP IN benefits FROM Grove;
GRANT SELECT ON Employee TO Grove;

...continued

CS 338 Relational model & SQL 2-68

Privileges on databases

CONNECT may create new users
DBA may do anything (super-user)
RESOURCE may create tables and views

(DDL functions)
GROUP may have members (i.e. the

user is to be a group)
MEMBERSHIP IN GROUP userid [, userid...]

places users in a group (user
inherits group's permissions)

CS 338 Relational model & SQL 2-69

Privileges on tables and
views

ALTER may use ALTER TABLE to
modify table schema

DELETE may delete existing tuples
from named table or view

INSERT may insert new tuples in
named table or view

REFERENCES may create a foreign
key constraint to named
table

SELECT may query existing tuples in
named table or view

UPDATE [column-name-list]
may update indicated
columns of existing tuples in
named table or view

ALL [PRIVILEGES] all of the
above

	The Relational Data Model and SQL
	Basic relational concepts
	...continued
	...continued
	Basic rules
	Keys
	Integrity of primary and foreign keys
	Relational algebra
	Reference
	Selection
	…continued
	Projection
	Cross product
	…continued
	Set union
	Set difference
	…continued
	Cross-product and select
	Step-by-step
	…continued
	…continued
	Attribute renaming
	Additional operators
	The SQL query language
	Retrieving all information from a table
	Selecting data
	Projecting columns
	Table aliases
	…continued [table aliases]
	Cross products and joins
	Set difference
	Subselects
	…continued [subselects]
	Outer Join
	…continued [outer join]
	…continued [outer join]
	Computing a set union
	More on SQL Queries
	…continued [in predicate]
	…continued [in predicate, select distinct]
	…continued [column aliasing]
	…continued [exists predicate]
	…continued [row ordering]
	…continued
	…continued [operators, string matching]
	…continued [operators, between]
	…continued [aggregate functions]
	…continued [aggregate functions]
	…continued [row grouping]
	…continued
	…continued
	Select statement syntax
	Semantics of an SQL query
	The power of the SQL query language
	More views
	...continued
	Pros & cons of views
	The “view update” problem
	Nulls in SQL
	Three-valued logic
	Review of SQL statements
	…continued
	The “last word” on SQL – for now
	Supplementary material: Security in SQL
	...continued
	Privileges on databases
	Privileges on tables and views

