The Entity-Relationship (E-R) model

Lecture topics:

- basic E-R modelling
- extensions to E-R modelling
- designing an E-R schema
- deriving relational schema from E-R diagrams

References:

- text 3rd edition: Chapter 3; Chapter 4, sections 1-2, 7-8; Chapter 9, sections 1-2;
- text 4th edition: Chapter 3; Chapter 4, sections 1-2, 7-8; Chapter 7;

Overview of E-R model

- used for database (conceptual schema) design
- world/enterprise described in terms of:
 - entities
 - attributes
 - relationships
- visualization: ER-diagram
- mature methodology (initially described Chen, 1976)

Basic E-R modelling

- Entity: a distinguishable object
- Entity set: set of entities of same type
- E.g.
 - students currently enrolled
 - flights offered by Air Canada
 - burglaries in Ontario during 1999
- Graphical representation of entity sets:

Student Flight Burglary

- Attributes describe properties of entities
 - E.g. for Student entities: StudentNum,
 StudentName, Major, etc.
- Domain: set of permitted values for an attribute
- Graphical representation of attributes:

- Relationship: representation of the fact that certain entities are related to each other
- Relationship set: set of relationships of a given type
- E.g.
 - students registered in courses
 - passengers booked on flights
 - parents and their children
 - bank branches, customers, and their accounts
- In order for a relationship to exist, the participating entities must exist

Graphical representation of relationship sets

Recursive relationships and role names

- Role: the function of an entity set in a relationship set
- Role name: an explicit indication of a role
- E.g.

 Role labels are needed whenever an entity set has multiple functions in a relationship set.

Relationships and attributes

 Relationships may also have attributes:

Constraints in E-R models

- binary relationship cardinalities
- general cardinality constraints
- primary keys
- existence dependencies

Binary relationship cardinality

- relationships between two entity sets,
 A and B
- many-to-one (N:1): each entity in A
 can be related to at most one entity in
 B, but an entity in B may be related to
 many entities in A
- E-R diagram notation:

E.g.

similarly: one-to-many (1:N)

- one-to-one (1:1): each entity in A can be related to at most one entity in B, and vice versa
- E.g.

- many-to-many (N:N): an entity can be related to many entities in the other set, and vice versa
- E.g.

General cardinality constraints

- Determine lower and upper bounds on the number of relationships of a given relationship set in which a component entity may participate
- E-R diagram notation:

E.g.

Primary keys

- as in relational model, each entity must be distinguishable from any other entity in its set by its attributes
- Primary key: selection of attributes chosen by designer as a primary identifier of entities in entity set

E.g.

• E.g.

Existence dependencies

- Sometimes the existence of an entity depends on the existence of another entity
- If x is existence dependent on y, then
 - y is a dominant entity
 - x is a subordinate entity
- E.g. "Transactions are existence dependent on accounts."

Primary keys of subordinate entity sets

- Weak entity set: an entity set with subordinate entities
- Strong entity set: an entity set with no subordinate entities
- primary identifier of weak entity sets combines with primary identifier of associated strong entity set
- E.g. "All transactions for a given account have a unique transaction number."

CS 338 E-R Modelling 3-16

- A weak entity must have an N:1 relationship to a distinct entity set
- Discriminator of a weak entity set: set
 of attributes that distinguish subordinate
 entities of the set, for a particular
 dominant entity
- Primary key for a weak entity set: discriminator + primary key of entity set for dominating entities
- ER diagram notation: (distinguishing an identifying relationship)

Example E-R diagram

Extensions to E-R modeling

- Structured attributes
- Aggregation
- Specialization
- Generalization

Structured attributes

- Composite attributes: attributes composed of two or more other attributes
- Multi-valued attributes: attributes that are set-valued
- E.g.

Aggregation

- Relationships can be viewed as higher-level entities
- E.g. "Accounts are assigned to a given student enrollment."

same, without aggregation:

Specialization

- A more specialized kind of entity set may be derived from a given entity set
- E.g. "Graduate students are students that have a supervisor and a number of degrees."

Generalization

- Two or more existing entity sets can be abstracted as a more general kind of entity set
- E.g. "A vehicle abstracts the notion of a car and a truck."

Designing an E-R schema

- usually many ways to design an E-R schema
- points to consider:
 - use attribute or entity set?
 - use entity set or relationship set?
 - degrees of relationships?
 - extended features?

Choosing between attributes and entity sets

- no simple answer!
- E.g. model employees' phones by a PhoneNumber attribute, or by Phone entity set related to Employee entity set?
 - is it (could it be) a separate object?
 - do we maintain information about it?
 - can several of its kind belong to another single entity?
 - does it make sense to delete such an object?
 - can it be missing from some of the entity set's entities?
 - can it be shared by different entities?
- "yes" to any of the above implies introducing a new entity set

Choosing between entity sets and relationship sets

- again no simple answer!
- E.g. Instead of representing accounts as entities, we could represent them as relationships

Use of non-binary relationships

 Can always represent a relationship on n entity sets with n-1 binary relationships

Another representation:

Use of extended E-R features

- Can improve modularity and abstraction if used with care
- Excessive use can complicate design

A simple methodology

- recognize entity sets
- recognize relationship sets and participating entity sets
- recognize attributes of entity sets and attributes of relationship sets
- define binary relationship types and existence dependencies
- define general cardinality constraints, keys and discriminators
- draw diagram

For each step, maintain a log of assumptions motivating the choices, and of restrictions imposed by the choices.

Translating E-R diagrams to relational schema

- General approach is straightforward:
 - each entity set becomes a table
 - each attribute (of an entity) becomes a table column
 - each relationship set becomes either table columns or table by itself

Representing strong entity sets

- Entity set E with attributes a₁, ..., an
 → table E with attributes a₁, ..., an
- Entity of type E ↔ row in table E
- Primary key of entity set → primary key of table
- E.g.

Structured attributes

Composite attributes, multi-valued attributes

Student

StudentNum Surname	GivenName	Major
--------------------	-----------	-------

Minors

Representing Weak Entity Sets

- Weak entity set E → table E
- Columns of table E include:
 - attributes of the weak entity set
 - attributes of the identifying relationship set (if any)
 - primary key attributes of entity set for dominating entities
- Primary key of weak entity set
 - → primary key of table

• E.g.

Transaction

<u>TransNum</u>	<u>AccNum</u>	Date	Amount

CS 338 E-R Modelling 3-37

Representing relationship sets

- If the relationship set is an identifying relationship set for a weak entity set then no action needed
- If some component entity set E has general cardinality constraint (1,1), add columns to table E:
 - attributes of the relationship set
 - primary key attributes of remaining component entity sets

• E.g.

TD1

TD1Category	CPP	EI	EHT	IncomeTax
-------------	-----	----	-----	-----------

CS 338 E-R Modelling 3-39

- Otherwise: relationship set $R \rightarrow$ table R
- Columns of table R include:
 - attributes of the relationship set
 - primary key attributes of each component entity set
- Primary key of table R:
 - if some component entity set E has the general cardinality constraint (0,1), choose the primary key attributes for E
 - otherwise, choose the primary key attributes of each component entity

• E.g.

CS 338 E-R Modelling 3-41

Match

<u>HomeTeamName</u>	<u>VisitorTeamName</u>	<u>LocName</u>	Score
---------------------	------------------------	----------------	-------

 Note that the role name of a component entity set is prepended to its primary key attributes

Representing aggregation

- Tabular representation for aggregation of relationship set R = tabular representation for relationship set R
- To represent relationship set involving aggregation of R, treat the aggregation like an entity set whose primary key = primary key of the table for R

CS 338 E-R Modelling 3-44

Representing specialization

 Create specialized table with primary attribute of higher-level entity, plus attributes as usual

Representing generalization

- Create a table for each lower-level entity set only
- Columns of new tables should include:
 - Attributes of lower level entity set
 - Attributes of the superset
- The higher-level entity set can be defined as a view on the tables for the lower-level entity sets

Truck

LicenceNum	MakeAndModel	Price	Tonnage	AxelCount
			_	

Car

LicenceNum MakeAndMode	Price	MaxSpeed	P'gerCount
------------------------	-------	----------	------------