
CS 338 Database design 4-1

Database design and quality

Lecture topics:
• measuring the quality of a schema
• schema design with normalization and

normal forms

References:
• text 3rd edition, Chapter 14: sections 1,

2.1, 4.2, 4.3, 5, 6; supplementary 2.2-2.4
• text 4th edition, Chapter 10: sections 1,

2.1, 4.2, 5, 6; supplementary 2.2-2.4

CS 338 Database design 4-2

Normal forms

• What is a good relational database
schema? How can we measure or
evaluate a relational schema?

• Goals:
– intuitive and straightforward retrieval and

changes
– nonredundant storage of data

• Normal forms:
– Boyce-Codd Normal Form (BCNF)
– Third Normal Form (3NF)

CS 338 Database design 4-3

• Consider:

Design anomalies

Typical operations:
• change vendor’s phone number
• add a new supplier (no items yet)
• cease getting “I3” from “S2”
• add a new part (no supplier yet)

Supplied_Items
Sno Sname City Ino Iname Price
S1
S1
S1
S2

Magna
Magna
Magna
Delco

Ajax
Ajax
Ajax
Hull

I1
I2
I3
I3

Bolt
Nut
Screw
Screw

0.50
0.25
0.30
0.40

Phone
416 555 1111
416 555 1111
416 555 1111
613 555 2222

CS 338 Database design 4-4

Discussion:
• redundancy: duplicated data, wasted

space and time
• update anomaly: update all copies of

data, corrupt otherwise
• insert anomaly: cannot insert without

complete information
• delete anomaly: deletion may

unintentionally remove useful data
• functional dependencies: attributes

that “go together”

Supplied_Items
Sno Sname City Ino Iname Price
S1
S1
S1
S2

Magna
Magna
Magna
Delco

Ajax
Ajax
Ajax
Hull

I1
I2
I3
I3

Bolt
Nut
Screw
Screw

0.50
0.25
0.30
0.40

Phone
416 555 1111
416 555 1111
416 555 1111
613 555 2222

...continued

CS 338 Database design 4-5

• compare the preceding with:

Iname
Bolt
Nut
Screw
Screw

Supplies
Sno Ino Price
S1
S1
S1
S2

I1
I2
I3
I3

0.50
0.25
0.30
0.40

Supplier
Sno Sname City
S1
S2

Magna
Delco

Ajax
Hull

Phone
416 555 1111
613 555 2222

• universal table has been decomposed
• Supplier table has only supplier data
• some anomalies gone, some remain

...continued

CS 338 Database design 4-6

• finally, compare with:

Item
Ino Iname

I1
I2
I3

Bolt
Nut
Screw

Supplies
Sno Ino Price
S1
S1
S1
S2

I1
I2
I3
I3

0.50
0.25
0.30
0.40

Supplier
Sno Sname City
S1
S2

Magna
Delco

Ajax
Hull

Phone
416 555 1111
613 555 2222

• Supplies table decomposed further
• all anomalies gone
• intuitive arrangement (!?)
• functional dependencies like primary

keys

...continued

CS 338 Database design 4-7

• extreme decomposition is undesirable
(information about relationships is lost)

• this is a “lossy” decomposition – what
we want is “lossless” (more later)

Sno
Snos

S1
S2

Sname
Snames

Magna
Delco

City
Cities

Ajax
Hull

Inum
Inums

I1
I2
I3

Iname
Inames

Bolt
Nut
Screw

Price
Prices

0.50
0.25
0.30
0.40

Phone
Phones

416 555 1111
613 555 2222

...continued

CS 338 Database design 4-8

Good database design

• What is a “good” relational database
schema?

• Rule of thumb: Independent facts in
separate tables

• or: Each relation schema should
consist of a primary key and a set of
mutually independent attributes

CS 338 Database design 4-9

Functional dependencies
• Generalizes notion of superkey, used

to characterize BCNF and 3NF

• Notation for tuple projection: reference
the tuples as t, u etc.

If the first tuple in Supplier is labelled t,
then:
t [Sno] = (S1)
t [Sname, City] = (Magna, Ajax)

Supplier
Sno Sname City
S1
S2

Magna
Delco

Ajax
Hull

Phone
416 555 1111
613 555 2222

CS 338 Database design 4-10

• Consider another example schema:

• Primary key constraint applies to entire
rows; forbids two different rows t and u in
EmpProj with t [SIN, PNum] = u [SIN,
PNum]
– SIN, PNum → Hours, Ename, Pname, etc

• But also want to disallow within row:
– two employees with one SIN
– one project number with two project names

or two locations
– different allowances for the same number

of hours at the same location
• Use functional dependencies to describe:

SIN → EName
PNum → PName, PLoc
PLoc, Hours → Allowance

EmpProj
SIN PNum Hours EName PName PLoc Allowance

...continued

CS 338 Database design 4-11

• FDs can predict anomalies. Consider:

Sno → Sname, City, Phone
Ino → Iname
Sno, Ino → Price

• Some indications:
– Sno is part of (not the entire) relation

superkey, and is also the entire left side of
an FD

• deleting Sno information by itself would be
impossible

– Sno appears on the left of more than one
FD

• adding just Sno information means some
other information is missing

Supplied_Items
Sno Sname City Ino Iname PricePhone

...continued

CS 338 Database design 4-12

Formal definitions

• Let R be a relation schema, and X, Y ⊆ R
• The functional dependency (FD)

X → Y
holds on R if no legal instance of R
contains two tuples t and u with t[X] = u[X]
and t[Y] ≠ u[Y]

• X functionally determines Y,
Y is functionally dependent on X

• K ⊆ R is a superkey for relation schema R
if dependency K → R holds on R

CS 338 Database design 4-13

Boyce-Codd Normal Form
(BCNF)

• Formalization of the goal that
independent relationships are stored in
separate tables

• Let R be a relation schema and F a set
of functional dependencies. A
functional dependency X → Y is trivial
if Y ⊆ X.

• Schema R is in BCNF if and only if
whenever (X → Y) ∈ F+ and XY ⊆ R,
then either
– (X → Y) is trivial, or
– X is a superkey of R

• A database schema {R1, ..., Rn} is in
BCNF if each relation schema Ri is in
BCNF

CS 338 Database design 4-14

• How does BCNF avoid redundancy?

• For schema Supplied_Items we had
FD: Sno → Sname, City, Phone

• Implies: “Magna”, “Ajax”, “416 555
1111” must be repeated for each item
supplied by supplier S1.

• Assume FD holds over a schema R that
is in BCNF. This implies
– Sno is a superkey for R
– each Sno value appears on one row

only

...continued

CS 338 Database design 4-15

A design method

• To create a “good” database schema,
define all tables in BCNF

• Done!

• Problems:
1 what to do with existing schemas that

are not BCNF?
2 is BCNF always possible?

• Answers:
– decompose existing schemas so that

they are BCNF
– theoretically yes, but practically no

CS 338 Database design 4-16

Decomposing a schema

• Let R be a relation schema (set of
attributes). Collection {R1, ..., Rn} of
relation schemas is a decomposition of
R if

R = R1 ∪ R2 ∪ ... ∪ Rn

• A good decomposition:
– eliminates redundancy (BCNF)
– minimal number of relations
– is lossless
– dependency-preserving

CS 338 Database design 4-17

Lossless decompositions

• Also called “lossless-join
decompositions”

• Earlier: a decomposition is lossless if a
join of all the tables results in the
original table

• Formally: A decomposition {R1, R2} of R
is lossless if and only if the common
attributes of R1 and R2 form a superkey
for either schema:

R1 ∩ R2 → R1 or
R1 ∩ R2 → R2

CS 338 Database design 4-18

continued...

• For example, recall Supplier–Item
table:
R = [Sno,Sname,City,Phone,Ino, Iname,

Price]
• Consider the first decomposition:

R1=[Sno,Sname,City,Phone];
R2=[Sno,Ino,Iname,Price]

• R1 ∩ R2 is (Sno) and Sno → R1, so this
is a lossless decomposition
– similarly for decomposing R2 into

R3=[Ino,Iname] and R4=[Sno,Ino,Price]

CS 338 Database design 4-19

continued...

• However, for R1=(Sno); R2=(Sname);
R3=(City), etc.:
– since Ri ∩ Rj = Ø ∀ i,j (i≠j), this is lossy

(Ø cannot → anything)
• Re-joining parts of a lossy

decomposition creates spurious tuples
– e.g., consider R1 join R2:

– this will create tuples with values
(S1,Magna), (S1,Delco), (S2,Magna),
(S2,Delco)

– (S1,Delco) and (S2,Magna) do not exist
anywhere in the original relation and are
spurious

Sno
R1

S1
S2

Sname
R2

Magna
Delco

CS 338 Database design 4-20

Dependency preservation

• Informally: ensuring that constraints
(i.e. FDs) are represented efficiently in
a decomposition

• Practical goal: testing FDs is efficient if
the are in a single table, expensive if
they require joining tables

• E.g.
Relation R = [A, B, C];
FD set F = {A → B, B → C, A → C}

• Consider two decompositions:
• D1 = { R1[A, B], R2[B, C] }
• D2 = { R1[A, B], R3[A, C] }
• F still applies to both D1 and D2

CS 338 Database design 4-21

• In D1:
A → B can be tested easily in R1
B → C can be tested easily in R2
A → C is automatic (FD implication)

• In D2:
A → B can be tested easily in R1
A → C can be tested easily in R3
B → C cannot be tested easily
• B → C is an interrelational constraint:

to test, must join tables R1 and R3

• Let R be a relation schema and F a set of
functional dependencies on R. A
decomposition D = {R1, ..., Rn} of R is
dependency preserving if F (or an
equivalent to F) contains no interrelational
constraints.

...continued

CS 338 Database design 4-22

The plot so far...

• BCNF is good
• Non-BCNF schemas can be

decomposed
• Decompositions should be lossless

and dependency-preserving
• Lossless BCNF decompositions

always exist
• Dependency-preserving BCNF

decompositions might not!

• Third normal form (3NF) is almost as
good as BCNF, and has the advantage
that a lossless, dependency-preserving
decomposition always exists

CS 338 Database design 4-23

Third Normal Form (3NF)

• Let R be a relation schema and F a set
of functional dependencies

• Schema R is in 3NF if and only if
whenever (X → Y) ∈ F+ and XY ⊆ R,
then either
– (X → Y) is trivial, or
– X is a superkey of R, or
– each attribute of Y is contained in a

candidate key of R
• A database schema {R1, ..., Rn} is in

3NF if each relation schema Ri is in
3NF

• Any schema that is BCNF is already
3NF

• Because 3NF is less restrictive than
BCNF, it allows more redundancy

CS 338 Database design 4-24

• E.g.
Relation Delivery =[time, supplier, carrier]
FD set F:
• supplier → carrier
• time, carrier → supplier

• Example instance:
time carrier supplier

overnight fedx s1
2-day fedx s1

overnight ups s2
bulk ups s2

• Delivery is not BCNF, but is 3NF
• Is a BCNF decomposition possible?

......continued

CS 338 Database design 4-25

Summary

• Formal algorithm exists to compute a
BCNF decomposition
– guarantees losslessness
– does not guarantee dependency

preservation
– computationally expensive

• Formal algorithm exists to compute 3NF
– guarantees losslessness
– guarantees dependency preservation
– computationally efficient

• If a “good” BCNF decomposition does
not exist, use 3NF

• In practice, dependency preservation is
important for efficiency

	Database design and quality
	Normal forms
	Design anomalies
	...continued
	...continued
	...continued
	...continued
	Good database design
	Functional dependencies
	...continued
	...continued
	Formal definitions
	Boyce-Codd Normal Form (BCNF)
	...continued
	A design method
	Decomposing a schema
	Lossless decompositions
	continued...
	continued...
	Dependency preservation
	...continued
	The plot so far...
	Third Normal Form (3NF)
	Summary

