Database design and quality

Lecture topics:
 measuring the quality of a schema

* schema design with normalization and
normal forms

References:

« text 3 edition, Chapter 14: sections 1,
2.1,4.2,4.3, 5, 6; supplementary 2.2-2.4

« text 4 edition, Chapter 10: sections 1,
2.1,4.2,5, 6; supplementary 2.2-2.4

CS 338 Database design 4-1

Normal forms

 What is a good relational database
schema? How can we measure or
evaluate a relational schema?

e Goals:

— Intuitive and straightforward retrieval and
changes

— nonredundant storage of data

Normal forms:

— Boyce-Codd Normal Form (BCNF)
— Third Normal Form (3NF)

CS 338 Database design 4-2

Design anomalies

e Consider:

Supplied Items

Sno |Sname | City | Phone Ino | Iname | Price
S1 | Magna| Ajax [4165551111| 11 | Bolt |0.50
S1 | Magna| Ajax [4165551111| 12 | Nut |0.25
S1 | Magna| Ajax 4165551111 I3 | Screw|0.30
S2 | Delco | Hull (613 555 2222| I3 | Screw|0.40

Typical operations:

« change vendor’s phone number

« add a new supplier (no items yet)

e cease getting “I13” from “S2”
e add a new part (no supplier yet)

CS 338

Database design

4-3

...continued

Supplied Items

Sno |Sname | City | Phone Ino | Iname | Price
S1 | Magna| Ajax [4165551111| 11 | Bolt |0.50
S1 | Magna| Ajax [4165551111| 12 | Nut |0.25
S1 | Magna| Ajax 4165551111 I3 | Screw|0.30
S2 | Delco | Hull {613 555 2222| I3 | Screw| 0.40
Discussion:

 redundancy: duplicated data, wasted
space and time

« update anomaly: update all copies of
data, corrupt otherwise

e Insert anomaly: cannot insert without
complete information

e delete anomaly: deletion may
unintentionally remove useful data

« functional dependencies: attributes
that “go together”

CS 338

Database design

4-4

...continued

e compare the preceding with:

Supplier
Sno | Sname| City Phone

S1 | Magna| Ajax | 416 555 1111
S2 | Delco | Hull | 613 555 2222

Supplies
Sno | Ino | Iname Price
S1 11 | Bolt 0.50
S1 12 | Nut 0.25

S1 I3 | Screw 0.30
S2 I3 | Screw 0.40

e universal table has been decomposed
o Supplier table has only supplier data
 some anomalies gone, some remain

CS 338 Database design

...continued

 finally, compare with:

Supplier
Sno [|Sname |City | Phone
S1 Magna| Ajax | 416 5551111
S2 Delco | Hull | 613 555 2222
ltem Supplies
Ino Iname Sno | Ino | Price
11 Bolt S1 11 0.50
12 Nut S1 12 0.25
13 Screw S1 13 0.30
S2 13 0.40

o Supplies table decomposed further
« all anomalies gone
 Intuitive arrangement (1?)
« functional dependencies like primary

keys

CS 338

Database design

4-6

...continued

« extreme decomposition is undesirable
(information about relationships is lost)

SNos Snames Cities Phones

Sno Sname City Phone
Sl Magna | |Ajax 416 555 1111
S2 Delco Hull 613 555 2222
Inums Inames Prices
Inum Iname Price
11 Bolt 0.50
12 Nut 0.25
13 Screw 0.30

0.40

e thisis a “lossy” decomposition — what
we want is “lossless” (more later)

CS 338 Database design 4-7

Good database design

 Whatis a “good” relational database
schema?

* Rule of thumb: Independent facts in
separate tables

e or: Each relation schema should
consist of a primary key and a set of
mutually independent attributes

CS 338 Database design

4-8

Functional dependencies

« (Generalizes notion of superkey, used
to characterize BCNF and 3NF

* Notation for tuple projection: reference
the tuples as t, u etc.

Supplier
Sno | Sname | City Phone

S1 Magna| Ajax | 416 5551111
S2 | Delco | Hull | 613 555 2222

If the first tuple in Supplier is labelled t,
then:
t [Sno] = (S1)
t [Sname, City] = (Magna, Ajax)

CS 338 Database design

...continued

e Consider another example schema:

EmpProj

SIN | PNum | Hours|EName|PName|PLoc |Allowance

Primary key constraint applies to entire
rows; forbids two different rows t and u In
EmpProj with t [SIN, PNum] = u [SIN,
PNum]

— SIN, PNum — Hours, Ename, Pname, etc
But also want to disallow within row:

— two employees with one SIN

— one project number with two project names
or two locations

— different allowances for the same number
of hours at the same location
Use functional dependencies to describe:
SIN - EName
PNum — PName, PLoc
PLoc, Hours — Allowance

CS 338 Database design 4-10

...continued

 FDs can predict anomalies. Consider:

Supplied_Items

Sno | Sname | City| Phone | Ino | Iname | Price

Sno —» Sname, City, Phone
Ino - Iname
Sno, Ino — Price

e Some indications:

— Sno is part of (not the entire) relation
superkey, and is also the entire left side of
an FD

 deleting Sno information by itself would be
Impossible

— Sno appears on the left of more than one

FD

« adding just Sno information means some
other information is missing

CS 338 Database design 4-11

Formal definitions

Let R be a relation schema, and X, Y c R
The functional dependency (FD)

X->Y
holds on R if no legal instance of R
contains two tuples t and u with t[X] = u[X]
and t[Y] = u[Y]
X functionally determines Y,
Y Is functionally dependent on X
K < R is a superkey for relation schema R
If dependency K - R holds on R

CS 338 Database design 4-12

Boyce-Codd Normal Form
(BCNF)

Formalization of the goal that
Independent relationships are stored Iin
separate tables

Let R be a relation schema and F a set
of functional dependencies. A
functional dependency X — Y is trivial
IfY < X.

Schema R is in BCNF if and only if
whenever (X - Y) € Frand XY c R,
then either

— (X > YY) istrivial, or
— X is a superkey of R

A database schema {R;, ..., R} IsIn
BCNF if each relation schema R; is in
BCNF

CS 338 Database design 4-13

...continued

« How does BCNF avoid redundancy?

* For schema Supplied Items we had
FD: Sno — Sname, City, Phone

 Implies: “Magna”, “Ajax”, “416 555
1111” must be repeated for each item
supplied by supplier S1.

e Assume FD holds over a schema R that
Is In BCNF. This implies
— Sno Is a superkey for R

— each Sno value appears on one row
only

CS 338 Database design 4-14

A design method

To create a “good” database schema,
define all tables in BCNF

Done!

Problems:

1 what to do with existing schemas that
are not BCNF?

2 I1s BCNF always possible?

Answers:

— decompose existing schemas so that
they are BCNF

— theoretically yes, but practically no ®

CS 338 Database design 4-15

Decomposing a schema

 Let R be arelation schema (set of
attributes). Collection {Ry, ..., R} of
relation schemas is a decomposition of
R if
R=R,UR,U.. UR,

* A good decomposition:
— eliminates redundancy (BCNF)
— minimal number of relations
— IS lossless
— dependency-preserving

CS 338 Database design 4-16

Lossless decompositions

* Also called “lossless-join
decompositions”

o Earlier. a decomposition is lossless if a
join of all the tables results in the
original table

 Formally: A decomposition {R;, R,} of R
IS lossless if and only if the common
attributes of R, and R, form a superkey
for either schema:

R,N"R,—>R; or
RiN"R, > R,

CS 338 Database design 4-17

continued...

 For example, recall Supplier—Item
table:

R = [Sno,Sname,City,Phone,lno, Iname,
Price]

« Consider the first decomposition:
R,=[Sho,Sname,City,Phone];
R,=[Sno,Ino,Iname,Price]

* R; "R, Is(Sno) and Sno — R, so this

IS a lossless decomposition

— similarly for decomposing R, into
R;=[Ino,Iname] and R,=[Sno,Ino,Price]

CS 338 Database design 4-18

continued...

 However, for R,=(Sno); R,=(Sname);
R,=(City), etc.:
— since RN R; =0 Vi, (i#), this Is lossy
(@ cannot — anything)

e Re-joining parts of a lossy
decomposition creates spurious tuples

— e.g., consider R, join R,

Rl RZ

Sno Shame
S1 Magna
S2 Delco

— this will create tuples with values
(S1,Magna), (S1,Delco), (S2,Magna),
(S2,Delco)

— (S1,Delco) and (S2,Magna) do not exist
anywhere in the original relation and are
spurious

CS 338 Database design 4-19

Dependency preservation

« Informally: ensuring that constraints
(l.e. FDs) are represented efficiently in
a decomposition

e Practical goal: testing FDs is efficient if
the are in a single table, expensive If
they require joining tables

e E.Q.
Relation R = [A, B, C];
FDsetF={A—>B,B—>C,A—>C}
e Consider two decompositions:
+ D, ={Ry[A, B], R,[B, C]}
+ D,={Ry[A, B], RyA, C]}
 F still applies to both D, and D,

CS 338 Database design 4-20

...continued

 InDy:

A — B can be tested easily in R;

B — C can be tested easily in R,

A — C is automatic (FD implication)
 InD,:

A — B can be tested easily in R;

A — C can be tested easily in R,

B — C cannot be tested easily

e B — C Isaninterrelational constraint:
to test, must join tables R; and R,

 Let R be arelation schema and F a set of
functional dependencieson R. A
decomposition D = {R, ..., R} of R IS
dependency preserving if F (or an
equivalent to F) contains no interrelational
constraints.

CS 338 Database design 4-21

The plot so far...

BCNF is good

Non-BCNF schemas can be
decomposed

Decompositions should be lossless
and dependency-preserving

Lossless BCNF decompositions
always exist

Dependency-preserving BCNF
decompositions might not!

Third normal form (3NF) is almost as
good as BCNF, and has the advantage
that a lossless, dependency-preserving
decomposition always exists

CS 338 Database design 4-22

Third Normal Form (3NF)

Let R be a relation schema and F a set
of functional dependencies

Schema R is in 3NF if and only if
whenever (X - Y) € Fr and XY c R,
then either

— (X > Y) s trivial, or
— X Is a superkey of R, or

— each attribute of Y Is contained in a
candidate key of R

A database schema {R,, ..., R} IS In
3NF if each relation schema R;is In
3NF

Any schema that is BCNF is already
3NF

Because 3NF is less restrictive than
BCNF, it allows more redundancy

CS 338 Database design 4-23

...continued

« E.Q.
Relation Delivery =[time, supplier, carrier]
FD set F:

e supplier — carrier
* time, carrier — supplier
« Example instance:

time carrier supplier
overnight fedx sl

2-day fedx sl
overnight ups S2

bulk ups S2
* Delivery is not BCNF, but is 3NF
* |s a BCNF decomposition possible?

CS 338 Database design 4-24

Summary

Formal algorithm exists to compute a
BCNF decomposition

— guarantees losslessness

— does not guarantee dependency
preservation

— computationally expensive

Formal algorithm exists to compute 3NF
— guarantees losslessness

— guarantees dependency preservation

— computationally efficient

If a “good” BCNF decomposition does
not exist, use 3NF

In practice, dependency preservation Is
Important for efficiency

CS 338 Database design 4-25

	Database design and quality
	Normal forms
	Design anomalies
	...continued
	...continued
	...continued
	...continued
	Good database design
	Functional dependencies
	...continued
	...continued
	Formal definitions
	Boyce-Codd Normal Form (BCNF)
	...continued
	A design method
	Decomposing a schema
	Lossless decompositions
	continued...
	continued...
	Dependency preservation
	...continued
	The plot so far...
	Third Normal Form (3NF)
	Summary

