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Transactions

Lecture topics
• properties of transactions
• failures and concurrency
• transactions in SQL
• implementation of transactions
• degrees of isolation
• transactions in distributed systems

References:
• text 3rd edition:  Chapter 5; Chapter 19;  

Chapter 20, sections 1, 5, 7-8;  
Chapter 21, sections 1, 2, 7-8;  
Chapter 24, section 4-5

• text 4th edition:  Chapter 13, sections 
1–6; Chapter 17;  Chapter 18, sections 
1, 5, 7-8;  Chapter 19, sections 1, 2, 7-
8;  Chapter 25, section 4-5
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Problems caused by failures

update Accounts
set Balance = Balance + 5
where BranchId = 12345

• if system crashes during processing, 
some, but not all, tuples with BranchId = 
12345 may have been updated

• DB state is unpredictable;  may be 
inconsistent

Anum CId BranchId Balance
Accounts
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• transfer money between accounts:

update Accounts
set Balance = Balance - 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

• if system crashes between these 
updates, balance for 8888 might be 
reduced without increasing balance for 
9999 (i.e., funds withdrawn but not 
redeposited)

...continued
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Problems caused by 
concurrency

• transaction 1:

update Accounts
set Balance = Balance - 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

• transaction  2:

select Sum(Balance)
from Accounts

• result of transaction 2 may not reflect 
the true sum of the account balances



CS338 Transactions 6-5

Transaction properties

• transactions are durable, atomic units 
of work
– Atomic:  indivisible, all-or-nothing
– Durable:  survives failures

• a transaction occurs either entirely, or 
not at all

• if a transaction occurs, its effects will 
not be erased or undone by 
subsequent failures



CS338 Transactions 6-6

• concurrent transactions must appear to 
have been executed sequentially, i.e., 
one at a time, in some order

• if Ti and Tj are concurrent transactions, 
then either:
– Ti will appear to precede Tj, meaning 

that Tj will “see” any updates made by 
Ti, and Ti will not see any updates 
made by Tj, or

– Ti will appear to follow Tj, meaning that 
Ti will see Tj’s updates and Tj will not 
see Ti’s.

...continued
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The ACID properties of 
transactions

• DBMS guarantees transactions have 
“ACID” properties:
Atomicity:  all-or-nothing execution

Consistency:  execution preserves 
database integrity

Isolation:  a transaction’s updates are not 
visible until it commits (finishes 
successfully)

Durability:  updates made by a committed 
transaction will not be destroyed by 
subsequent failures.
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Abort and commit

• a transaction terminates by aborting, or 
by committing:
– when a transaction commits, any updates 

become durable and visible to other 
transactions  

– when a transaction aborts, any updates 
are undone (erased), as if the transaction 
never ran at all 

• atomicity:
– commit is the “all” in “all-or-nothing”

execution 
– abort is the “nothing” in “all-or-nothing”

execution

• a transaction that has started, but not yet 
aborted or committed, is active
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Transactions in SQL

• a transaction begins when an application 
first executes an SQL command

• two SQL commands are available to 
terminate a transaction:
commit [work]:  commit the transaction
rollback [work]:  abort the transaction

• a new transaction begins with the next 
SQL command after commit work or 
rollback work
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Using transactions

• use of transactions in a DBMS has two 
aspects:
– concurrency control:  guarantees that 

committed transactions appear to 
execute sequentially

– recovery management:  guarantees 
that committed transactions are 
durable, and that aborted transactions 
have no effect on the database



CS338 Transactions 6-11

A DBMS storage model

Memory Buffers
(cache)

Database File

Disk 1

Log File

Disk 2

T0,begin
T0,X,99,100
T1,begin
T1,Y,199,200

DBMS pages
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Backups, mirroring, and 
multiple disks

Memory Buffer

Database File

Log File

T0,begin
T0,X,99,100

Mirrored Log File

T0,begin
T0,X,99,100

Backup Database File
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Storage management

• Disks are persistent storage; permanent, 
infinite size (relatively)  but slow

• Memory is transient storage; temporary, 
limited size, but fast

• DBMS fetches database contents from 
disk into cache memory
– DB instance organized into pages
– need  page cache management strategy
– handle “out of cache memory” problems, 

eg LRU, FIFO
– need to decide when to write from cache 

back to disk (page flushing)
• In-place versus shadow update

– in-place rewrites the disk block in the 
same place

– shadow creates multiple copies
– implications for implementation of 

abort/commit
– in-place is used in most systems
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Deferred vs immediate 
update

• Deferred update:  wait (at least) until 
transaction commits before updating 
disk pages
– changes in memory cache & written to 

log (but could be buffered write)
– abort is easy
– commit must ensure all log records  

written before cache pages are written
– force flushes as soon as committed

• Immediate update:  cache manager 
may write pages as required
– called stealing
– abort is more complex, must be able to 

undo
– must write log records whenever page 

is flushed
• In either case (assuming in-place 

update), use write-ahead logging
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Write-ahead logging

• Used to ensure the log is consistent 
with the main database

• Two basic rules:
1. log record must be written before 

corresponding page is flushed
2. all log records must be written before 

commit
• Rule 1 for atomicity

– so that each operation is known and 
can be undone if necessary

• Rule 2 for durability
– so that the effect of a committed 

transaction is known
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Logfile structure

• recovery management is usually done 
with a database log

• database log is a read/append data 
structure, normally stored in a file

• when DBMS processes transactions, log 
records are appended to the log  

• Log record types:
UNDO information:  

“before” copy of objects that are modified 
by a transaction.  UNDO information is 
used to undo database changes made by 
transactions that abort

REDO information:  “after” copy of objects 
that are modified by a transaction.  REDO 
records are used to redo the work done 
by a transaction that commits

BEGIN/COMMIT/ABORT: record transaction 
boundaries



CS338 Transactions 6-17

Example of a log

(oldest part of the log)
log head → T0,begin

T0,X,99,100
T1,begin
T1,Y,199,200
T2,begin
T2,Z,51,50
T1,M,1000,10
T1,commit
T3,begin
T2,abort
T3,Y,200,50
T4,begin
T4,M,10,100

log tail  → T3,commit
(newest part of log)
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Using the log for 
commit & abort

• To commit a transaction Ti

– append Ti,COMMIT to log
– ensure all log records actually written (in 

case of buffering)
– inform transaction manager commit 

complete, and end transaction

• To abort a transaction Ti

– scan log backwards looking for items 
updated by Ti

– restore old value
– append Ti,ABORT to log
– inform transaction manager abort 

complete, and end transaction
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Using the log for recovery
• to recover from a system failure, the 

DBMS uses the log:
– to determine which transactions were 

active when the failure occurred, and to 
undo their database updates

– to recreate the committed updates that 
may have been lost

• method:
– scan the log from tail to head (backwards 

in time):
• create a list of committed transactions
• create a list of rolled-back transactions
• undo updates of active transactions

– scan the log from head to tail (forwards in 
time):
• redo updates of committed transactions
• ignore rolled-back transactions

– maybe restart active transactions
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• after recovering from failure with media 
damage:
– restore database from backup
– use log to determine which transactions 

had been committed since the backup
– redo committed transaction database 

updates

...continued
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Checkpoints
• as the log grows, the time required to 

recover from a failure also grows
• checkpoints are used to reduce the 

amount of log data that must be scanned 
after a system failure

• a simple checkpoint algorithm:
– prevent new transactions from starting, 

wait for active transactions to finish
– copy modified blocks from memory buffer 

to database files
– write a CHECKPOINT record in the log
– allow new transactions to begin

• problems:  time-consuming, unacceptable  
downtime
– more sophisticated algorithms can improve 

performance
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Example

• scan backward:  
– committed: T4

– rolled-back: T1

– T2, T3 are active, undo
• scan forward

– redo T4

– ignore T1

• maybe restart T2, T3

timetime
failurefailurecheckpointcheckpoint

TT11

TT22

TT33

TT44

rollback

commit

??

??
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Concurrency control
• server-oriented DBMS typically 

processes several transactions 
simultaneously.  This is generally much 
faster than processing transactions 
serially, i.e., one at a time.

• DBMS must ensure that concurrent 
transactions appear to be processed 
serially

• an interleaved execution of a set of 
transactions is serializable if it is 
equivalent to a serial execution of the 
same transactions

• notation:

– ri [x] means that transaction Ti reads 
object x

– wi [x] means that transaction Ti writes 
(modifies) object x
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Example
• transactions:

T1:  r1[x], x←x+1, w1[x]
T2:  r2[x], x←x×2, w2[x] 

• serial executions:
T1 then T2:  x is 2·(x+1)
T2 then T1:  x is 2·x + 1

• an interleaved execution:

time T1 T2
r1[x]

r2[x]
x←x+1

x←x×2
w1[x]
commit

w2[x]
commit

• result x is 2·x (“lost update”, “dirty write”)
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Example
• T2:  r2[x], x←x×2, w2[x], r2[y], x←x+y, w2[x]
• serial executions:

T1 then T2:  x is 2·(x+1)+y
T2 then T1:  x is 2·x+y+1

• another execution:

time T1 T2
r2[x]
x←x×2
w2[x]

r1[x] 
x←x+1 
w1[x]
commit

r2[y]
x←x+y
w2[x] 
commit

• result x is 2·x+y
• T1 has done a “dirty read”
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Serializability

• defn:  a schedule for a set of transactions 
is an arbitrary ordering of read and write 
operations (preserving relative orders 
within each)

• transactions:
T1 = w1[x] w1[y]
T2 = r2[x] r2[y]

• some schedules:
Sa = w1[x] w1[y] r2[x] r2[y]
Sb = w1[x] r2[x] w1[y] r2[y]
Sc = w1[x] r2[x] r2[y] w1[y] 

• Sa is a serial schedule (T1, T2)
• Sb is serializable because it is equivalent 

to Sa 

• Sc is not serializable
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Two-phase locking

• most DBMSs use locking to guarantee 
that only serializable executions occur

• before a transaction may read or write 
an object, it must have a lock on that 
object
– a shared lock is required to read an 

object
– an exclusive lock is required to write 

an object

• there is no “lock” command in SQL --
locks are acquired automatically by the 
database system
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• rules for locks:
– any number of transactions may acquire 

and hold shared locks on the same object
– only one transaction may acquire an 

exclusive lock on an object
– if an exclusive lock is held on an object, no 

locks by other transactions are permitted
– a transaction’s locks are not released until 

it commits or aborts, i.e., until it is finished

• this algorithm is called (strict) two-phase 
locking (2PL)
– growing phase:  locks are acquired
– shrinking phase:  locks are released, no 

new locks are acquired
• text:  conservative, basic, strict, rigorous
• two-phase locking guarantees transaction 

executions to be serializable

...continued
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Transaction blocking

• a transaction must have a lock on each 
object it wishes to read or write

• what if  a transaction cannot acquire a lock?

• E.g., consider schedule of transactions T1
and T2:

S = r1[x] w2[x]
T2 cannot be given the necessary lock on x
because of the rule prohibiting a shared and 
exclusive lock on the same object by 
different transactions

• when a transaction cannot obtain a lock, it is 
blocked (made to wait) until the lock can be 
obtained

• in the example above, T2 must wait until T1
commits or rolls-back
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Deadlocks

• when two-phase locking is used, 
deadlocks may occur

• E.g., consider schedule 
S = r1[x] r2[y] w2[x] w1[y]

• T1 obtains a shared lock on object x
T2 obtains a shared lock on object y
T2 requests an exclusive lock on

object x, but is blocked
T1 requests an exclusive lock on

object y but is blocked

• if deadlock occurs, the DBMS must abort 
one of the transactions involved:  called 
an involuntary abort
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Isolation levels
• For some applications, the guarantee of 

serializable executions may carry a heavy 
price.  Performance may be poor 
because of blocked transactions and 
deadlocks.

• SQL allows serializability guarantees to 
be relaxed, if necessary.  Four isolation 
levels are supported, with the highest 
being serializability:

– Level 3:  (serializability)
• read and write locks are acquired and held 

until end of transaction

– Level 2:  (repeatable read)
• identical to Level 3 unless insertion and 

deletion of tuples is considered
• “phantom tuples” may occur
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• Level 1:  (cursor stability)
– shared (read) locks are not held until the 

end of the transaction
– exclusive (write) locks are held until the 

end of the transaction
– non-repeatable reads are possible, i.e., 

a transaction that reads the same object 
twice may read a different value each 
time

• Level 0:
– no read nor write locks 
– no updates, insertions, or deletions are 

permitted
– transaction may read uncommitted 

updates (of other transactions)

...continued
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Transactions in distributed 
servers

• a transaction is officially committed 
when its commit log record is written

• in distributed DBMS, a transaction may 
execute at several sites, each with its 
own log

• a single transaction must not commit at 
some sites and abort on others

• distributed DBMSs must use an 
agreement protocol to ensure that all 
sites agree on the fate of each 
transaction

• most systems use an agreement 
protocol called two-phase commit
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The two-phase commit 
protocol

• One site acts as the coordinator.  The 
following steps are taken to commit a 
transaction:
– the coordinator sends a “prepare”

message to the other sites
– each site decides whether it wants to 

commit or abort the transaction and 
sends its vote to the coordinator

– if abort, it writes an abort record in its log, 
and votes for abort

– if commit, it writes a prepare record in its 
log, and votes for commit
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• If all sites vote commit, the coordinator 
writes a commit record in its log, 
otherwise it writes an abort record.  The 
coordinator sends its decision to all of the 
sites.

• Each site commits or aborts, according to 
the message from the coordinator. Some 
versions of 2PC send an 
acknowledgement to the coordinator.

...continued
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CoordinatorCoordinator

Site ASite A Site BSite B

1.1:prepare1.1:prepare

1.2:vote1.2:vote

2.1:decision2.1:decision

2.2: acknowledge2.2: acknowledge

1.11.1

1.21.2

2.12.1

2.22.2

...continued
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