
CS338 Transactions 6-1

Transactions

Lecture topics
• properties of transactions
• failures and concurrency
• transactions in SQL
• implementation of transactions
• degrees of isolation
• transactions in distributed systems

References:
• text 3rd edition: Chapter 5; Chapter 19;

Chapter 20, sections 1, 5, 7-8;
Chapter 21, sections 1, 2, 7-8;
Chapter 24, section 4-5

• text 4th edition: Chapter 13, sections
1–6; Chapter 17; Chapter 18, sections
1, 5, 7-8; Chapter 19, sections 1, 2, 7-
8; Chapter 25, section 4-5

CS338 Transactions 6-2

Problems caused by failures

update Accounts
set Balance = Balance + 5
where BranchId = 12345

• if system crashes during processing,
some, but not all, tuples with BranchId =
12345 may have been updated

• DB state is unpredictable; may be
inconsistent

Anum CId BranchId Balance
Accounts

CS338 Transactions 6-3

• transfer money between accounts:

update Accounts
set Balance = Balance - 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

• if system crashes between these
updates, balance for 8888 might be
reduced without increasing balance for
9999 (i.e., funds withdrawn but not
redeposited)

...continued

CS338 Transactions 6-4

Problems caused by
concurrency

• transaction 1:

update Accounts
set Balance = Balance - 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

• transaction 2:

select Sum(Balance)
from Accounts

• result of transaction 2 may not reflect
the true sum of the account balances

CS338 Transactions 6-5

Transaction properties

• transactions are durable, atomic units
of work
– Atomic: indivisible, all-or-nothing
– Durable: survives failures

• a transaction occurs either entirely, or
not at all

• if a transaction occurs, its effects will
not be erased or undone by
subsequent failures

CS338 Transactions 6-6

• concurrent transactions must appear to
have been executed sequentially, i.e.,
one at a time, in some order

• if Ti and Tj are concurrent transactions,
then either:
– Ti will appear to precede Tj, meaning

that Tj will “see” any updates made by
Ti, and Ti will not see any updates
made by Tj, or

– Ti will appear to follow Tj, meaning that
Ti will see Tj’s updates and Tj will not
see Ti’s.

...continued

CS338 Transactions 6-7

The ACID properties of
transactions

• DBMS guarantees transactions have
“ACID” properties:
Atomicity: all-or-nothing execution

Consistency: execution preserves
database integrity

Isolation: a transaction’s updates are not
visible until it commits (finishes
successfully)

Durability: updates made by a committed
transaction will not be destroyed by
subsequent failures.

CS338 Transactions 6-8

Abort and commit

• a transaction terminates by aborting, or
by committing:
– when a transaction commits, any updates

become durable and visible to other
transactions

– when a transaction aborts, any updates
are undone (erased), as if the transaction
never ran at all

• atomicity:
– commit is the “all” in “all-or-nothing”

execution
– abort is the “nothing” in “all-or-nothing”

execution

• a transaction that has started, but not yet
aborted or committed, is active

CS338 Transactions 6-9

Transactions in SQL

• a transaction begins when an application
first executes an SQL command

• two SQL commands are available to
terminate a transaction:
commit [work]: commit the transaction
rollback [work]: abort the transaction

• a new transaction begins with the next
SQL command after commit work or
rollback work

CS338 Transactions 6-10

Using transactions

• use of transactions in a DBMS has two
aspects:
– concurrency control: guarantees that

committed transactions appear to
execute sequentially

– recovery management: guarantees
that committed transactions are
durable, and that aborted transactions
have no effect on the database

CS338 Transactions 6-11

A DBMS storage model

Memory Buffers
(cache)

Database File

Disk 1

Log File

Disk 2

T0,begin
T0,X,99,100
T1,begin
T1,Y,199,200

DBMS pages

CS338 Transactions 6-12

Backups, mirroring, and
multiple disks

Memory Buffer

Database File

Log File

T0,begin
T0,X,99,100

Mirrored Log File

T0,begin
T0,X,99,100

Backup Database File

CS338 Transactions 6-13

Storage management

• Disks are persistent storage; permanent,
infinite size (relatively) but slow

• Memory is transient storage; temporary,
limited size, but fast

• DBMS fetches database contents from
disk into cache memory
– DB instance organized into pages
– need page cache management strategy
– handle “out of cache memory” problems,

eg LRU, FIFO
– need to decide when to write from cache

back to disk (page flushing)
• In-place versus shadow update

– in-place rewrites the disk block in the
same place

– shadow creates multiple copies
– implications for implementation of

abort/commit
– in-place is used in most systems

CS338 Transactions 6-14

Deferred vs immediate
update

• Deferred update: wait (at least) until
transaction commits before updating
disk pages
– changes in memory cache & written to

log (but could be buffered write)
– abort is easy
– commit must ensure all log records

written before cache pages are written
– force flushes as soon as committed

• Immediate update: cache manager
may write pages as required
– called stealing
– abort is more complex, must be able to

undo
– must write log records whenever page

is flushed
• In either case (assuming in-place

update), use write-ahead logging

CS338 Transactions 6-15

Write-ahead logging

• Used to ensure the log is consistent
with the main database

• Two basic rules:
1. log record must be written before

corresponding page is flushed
2. all log records must be written before

commit
• Rule 1 for atomicity

– so that each operation is known and
can be undone if necessary

• Rule 2 for durability
– so that the effect of a committed

transaction is known

CS338 Transactions 6-16

Logfile structure

• recovery management is usually done
with a database log

• database log is a read/append data
structure, normally stored in a file

• when DBMS processes transactions, log
records are appended to the log

• Log record types:
UNDO information:

“before” copy of objects that are modified
by a transaction. UNDO information is
used to undo database changes made by
transactions that abort

REDO information: “after” copy of objects
that are modified by a transaction. REDO
records are used to redo the work done
by a transaction that commits

BEGIN/COMMIT/ABORT: record transaction
boundaries

CS338 Transactions 6-17

Example of a log

(oldest part of the log)
log head → T0,begin

T0,X,99,100
T1,begin
T1,Y,199,200
T2,begin
T2,Z,51,50
T1,M,1000,10
T1,commit
T3,begin
T2,abort
T3,Y,200,50
T4,begin
T4,M,10,100

log tail → T3,commit
(newest part of log)

CS338 Transactions 6-18

Using the log for
commit & abort

• To commit a transaction Ti

– append Ti,COMMIT to log
– ensure all log records actually written (in

case of buffering)
– inform transaction manager commit

complete, and end transaction

• To abort a transaction Ti

– scan log backwards looking for items
updated by Ti

– restore old value
– append Ti,ABORT to log
– inform transaction manager abort

complete, and end transaction

CS338 Transactions 6-19

Using the log for recovery
• to recover from a system failure, the

DBMS uses the log:
– to determine which transactions were

active when the failure occurred, and to
undo their database updates

– to recreate the committed updates that
may have been lost

• method:
– scan the log from tail to head (backwards

in time):
• create a list of committed transactions
• create a list of rolled-back transactions
• undo updates of active transactions

– scan the log from head to tail (forwards in
time):
• redo updates of committed transactions
• ignore rolled-back transactions

– maybe restart active transactions

CS338 Transactions 6-20

• after recovering from failure with media
damage:
– restore database from backup
– use log to determine which transactions

had been committed since the backup
– redo committed transaction database

updates

...continued

CS338 Transactions 6-21

Checkpoints
• as the log grows, the time required to

recover from a failure also grows
• checkpoints are used to reduce the

amount of log data that must be scanned
after a system failure

• a simple checkpoint algorithm:
– prevent new transactions from starting,

wait for active transactions to finish
– copy modified blocks from memory buffer

to database files
– write a CHECKPOINT record in the log
– allow new transactions to begin

• problems: time-consuming, unacceptable
downtime
– more sophisticated algorithms can improve

performance

CS338 Transactions 6-22

Example

• scan backward:
– committed: T4

– rolled-back: T1

– T2, T3 are active, undo
• scan forward

– redo T4

– ignore T1

• maybe restart T2, T3

timetime
failurefailurecheckpointcheckpoint

TT11

TT22

TT33

TT44

rollback

commit

??

??

CS338 Transactions 6-23

Concurrency control
• server-oriented DBMS typically

processes several transactions
simultaneously. This is generally much
faster than processing transactions
serially, i.e., one at a time.

• DBMS must ensure that concurrent
transactions appear to be processed
serially

• an interleaved execution of a set of
transactions is serializable if it is
equivalent to a serial execution of the
same transactions

• notation:

– ri [x] means that transaction Ti reads
object x

– wi [x] means that transaction Ti writes
(modifies) object x

CS338 Transactions 6-24

Example
• transactions:

T1: r1[x], x←x+1, w1[x]
T2: r2[x], x←x×2, w2[x]

• serial executions:
T1 then T2: x is 2·(x+1)
T2 then T1: x is 2·x + 1

• an interleaved execution:

time T1 T2
r1[x]

r2[x]
x←x+1

x←x×2
w1[x]
commit

w2[x]
commit

• result x is 2·x (“lost update”, “dirty write”)

CS338 Transactions 6-25

Example
• T2: r2[x], x←x×2, w2[x], r2[y], x←x+y, w2[x]
• serial executions:

T1 then T2: x is 2·(x+1)+y
T2 then T1: x is 2·x+y+1

• another execution:

time T1 T2
r2[x]
x←x×2
w2[x]

r1[x]
x←x+1
w1[x]
commit

r2[y]
x←x+y
w2[x]
commit

• result x is 2·x+y
• T1 has done a “dirty read”

CS338 Transactions 6-26

Serializability

• defn: a schedule for a set of transactions
is an arbitrary ordering of read and write
operations (preserving relative orders
within each)

• transactions:
T1 = w1[x] w1[y]
T2 = r2[x] r2[y]

• some schedules:
Sa = w1[x] w1[y] r2[x] r2[y]
Sb = w1[x] r2[x] w1[y] r2[y]
Sc = w1[x] r2[x] r2[y] w1[y]

• Sa is a serial schedule (T1, T2)
• Sb is serializable because it is equivalent

to Sa

• Sc is not serializable

CS338 Transactions 6-27

Two-phase locking

• most DBMSs use locking to guarantee
that only serializable executions occur

• before a transaction may read or write
an object, it must have a lock on that
object
– a shared lock is required to read an

object
– an exclusive lock is required to write

an object

• there is no “lock” command in SQL --
locks are acquired automatically by the
database system

CS338 Transactions 6-28

• rules for locks:
– any number of transactions may acquire

and hold shared locks on the same object
– only one transaction may acquire an

exclusive lock on an object
– if an exclusive lock is held on an object, no

locks by other transactions are permitted
– a transaction’s locks are not released until

it commits or aborts, i.e., until it is finished

• this algorithm is called (strict) two-phase
locking (2PL)
– growing phase: locks are acquired
– shrinking phase: locks are released, no

new locks are acquired
• text: conservative, basic, strict, rigorous
• two-phase locking guarantees transaction

executions to be serializable

...continued

CS338 Transactions 6-29

Transaction blocking

• a transaction must have a lock on each
object it wishes to read or write

• what if a transaction cannot acquire a lock?

• E.g., consider schedule of transactions T1
and T2:

S = r1[x] w2[x]
T2 cannot be given the necessary lock on x
because of the rule prohibiting a shared and
exclusive lock on the same object by
different transactions

• when a transaction cannot obtain a lock, it is
blocked (made to wait) until the lock can be
obtained

• in the example above, T2 must wait until T1
commits or rolls-back

CS338 Transactions 6-30

Deadlocks

• when two-phase locking is used,
deadlocks may occur

• E.g., consider schedule
S = r1[x] r2[y] w2[x] w1[y]

• T1 obtains a shared lock on object x
T2 obtains a shared lock on object y
T2 requests an exclusive lock on

object x, but is blocked
T1 requests an exclusive lock on

object y but is blocked

• if deadlock occurs, the DBMS must abort
one of the transactions involved: called
an involuntary abort

CS338 Transactions 6-31

Isolation levels
• For some applications, the guarantee of

serializable executions may carry a heavy
price. Performance may be poor
because of blocked transactions and
deadlocks.

• SQL allows serializability guarantees to
be relaxed, if necessary. Four isolation
levels are supported, with the highest
being serializability:

– Level 3: (serializability)
• read and write locks are acquired and held

until end of transaction

– Level 2: (repeatable read)
• identical to Level 3 unless insertion and

deletion of tuples is considered
• “phantom tuples” may occur

CS338 Transactions 6-32

• Level 1: (cursor stability)
– shared (read) locks are not held until the

end of the transaction
– exclusive (write) locks are held until the

end of the transaction
– non-repeatable reads are possible, i.e.,

a transaction that reads the same object
twice may read a different value each
time

• Level 0:
– no read nor write locks
– no updates, insertions, or deletions are

permitted
– transaction may read uncommitted

updates (of other transactions)

...continued

CS338 Transactions 6-33

Transactions in distributed
servers

• a transaction is officially committed
when its commit log record is written

• in distributed DBMS, a transaction may
execute at several sites, each with its
own log

• a single transaction must not commit at
some sites and abort on others

• distributed DBMSs must use an
agreement protocol to ensure that all
sites agree on the fate of each
transaction

• most systems use an agreement
protocol called two-phase commit

CS338 Transactions 6-34

The two-phase commit
protocol

• One site acts as the coordinator. The
following steps are taken to commit a
transaction:
– the coordinator sends a “prepare”

message to the other sites
– each site decides whether it wants to

commit or abort the transaction and
sends its vote to the coordinator

– if abort, it writes an abort record in its log,
and votes for abort

– if commit, it writes a prepare record in its
log, and votes for commit

CS338 Transactions 6-35

• If all sites vote commit, the coordinator
writes a commit record in its log,
otherwise it writes an abort record. The
coordinator sends its decision to all of the
sites.

• Each site commits or aborts, according to
the message from the coordinator. Some
versions of 2PC send an
acknowledgement to the coordinator.

...continued

CS338 Transactions 6-36

CoordinatorCoordinator

Site ASite A Site BSite B

1.1:prepare1.1:prepare

1.2:vote1.2:vote

2.1:decision2.1:decision

2.2: acknowledge2.2: acknowledge

1.11.1

1.21.2

2.12.1

2.22.2

...continued

	Transactions
	Problems caused by failures
	...continued
	Problems caused by concurrency
	Transaction properties
	...continued
	The ACID properties of transactions
	Abort and commit
	Transactions in SQL
	Using transactions
	A DBMS storage model
	Backups, mirroring, and multiple disks
	 Storage management
	Deferred vs immediate update
	Write-ahead logging
	Logfile structure
	Example of a log
	Using the log for �commit & abort
	Using the log for recovery
	...continued
	Checkpoints
	Example
	Concurrency control
	Example
	Example
	Serializability
	Two-phase locking
	...continued
	Transaction blocking
	Deadlocks
	Isolation levels
	...continued
	Transactions in distributed servers
	The two-phase commit protocol
	...continued
	...continued

